Skip to main content
Log in

Primary co-culture as a complementary approach to explore the diversity of bacterial associations in marine invertebrates: the example of Nautilus macromphalus (Cephalopoda: Nautiloidea)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The recent application of molecular tools to address associations between bacteria and marine invertebrates has provided access to an immense diversity of unidentified microbes resistant to cultivation. However, the role of bacteria as partners in animal physiology remains unclear and in most cases difficult to investigate in the absence of adequate condition of cell growth and proliferation. In this work, we studied the reservoir of microbes associated with the excretory organs of Nautilus macromphalus as a model. Using the bacterial 16S RNA gene as a marker, we compared three complementary approaches for bacterial detection: bacterial DNA extraction from N. macromphalus tissues (“molecular approach”), strain isolation to provide a bacterial culture collection (“microbiological approach”) and finally, maintenance of N. macromphalus excretory organ cells with associated bacteria (“cellular approach”). Our results stress the potential of the “cellular approach” as a promising new tool as it promotes the detection of as yet uncultured β-proteobacteria and spirochaetes associated with N. macromphalus, and serves as a foundation for future studies describing potential roles that these bacteria may play in Nautilus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    Article  CAS  Google Scholar 

  • Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, Teske A, Sogin ML (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3:151–167

    Article  CAS  Google Scholar 

  • Bloodgood RA (1977) The squid accessory nidamental gland, ultrastructure and association with bacteria. Tissue Cell 9:197–208

    Article  CAS  Google Scholar 

  • Boucher-Rodoni R, Mangold K (1994) Ammonia production in cephalopods: physiological and evolutionary aspects. Mar Freshw Behav Physiol 25:53–60

    Article  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:294–296

    Article  Google Scholar 

  • Connon SA, Tovanabootr A, Dolan M, Vergin K, Giovannoni SJ, Semprini L (2005) Bacterial community composition determined by culture-independent and dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environ Microbiol 7:165–178

    Article  CAS  Google Scholar 

  • Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ (2004) NO means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of beneficial association. Cell Microbiol 6(12):1139–1151

    Article  CAS  Google Scholar 

  • Domart-Coulon I, Doumenc D, Auzoux-Bordenave S, Le Fichant Y (1994) Identification of media supplements that improve the viability of primary cell cultures of Crassostrea gigas oysters. Cytotechnology 16:109–120

    Article  CAS  Google Scholar 

  • Dubilier N, Mulders C, Ferdelman T, de Beer D, Pernthaler A, Klein M, Wagner M, Erseus C, Thiermann F, Krieger J, Giere O, Amann R (2001) Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411:298–302

    Article  CAS  Google Scholar 

  • Eilers H, Pernthaler J, Glockner FO, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051

    Article  CAS  Google Scholar 

  • Frank U, Rabinowitz C, Rinkevich B (1994) In vitro establishment of continuous cell cultures and cell lines from ten colonial cnidarians. Mar Biol 120:491–499

    Article  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264

    Article  Google Scholar 

  • Grigioni S, Boucher-Rodoni R, Demarta A, Tonolla M, Peduzzi R (2000) Phylogenetic characterisation of bacterial symbionts in the accessory nidamental glands of the sepioid S. officinalis (Cephalopoda: Decapoda). Mar Biol 136:217–222

    Article  CAS  Google Scholar 

  • Hall T (1997–2001) BioEdit. http://www.mbioncsu.edu/BioEdit/bioedit.html

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55(2):167–177

    Article  CAS  Google Scholar 

  • Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    Article  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  Google Scholar 

  • Kaufman MR, Ikeda Y, Patton C, Van Dykhuizen G, Epel D (1998) Bacterial symbionts colonize the accessory nidamental gland of the squid Loligo opalescens via horizontal transmission. Biol Bull 194:36–43

    Article  CAS  Google Scholar 

  • Kimura H, Sato M, Sasayama Y, Naganuma T (2003) Molecular characterization and in situ localization of endosymbiotic 16S ribosomal RNA and RuBisCO genes in the pogonophoran tissue. Mar Biotechnol 5:261–269

    Article  CAS  Google Scholar 

  • Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380:396

    Article  CAS  Google Scholar 

  • Lamarcq LH, McFall-Ngai MJ (1998) Induction of a gradual, reversible morphogenesis of its host’s epithelial brush border by Vibrio fischeri. Infect Immun 66(2):777–785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBRgreen I. Appl Environ Microbiol 63:186–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • McFall-Ngai MJ (2002) Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1–14

    Article  CAS  Google Scholar 

  • McFall-Ngai MJ, Ruby EG (1991) Symbiotic recognition and subsequent morphogenesis as early events in an animal–bacterial mutualism. Science 254:1491–1494

    Article  CAS  Google Scholar 

  • Nishiguchi MK, Nair VS (2003) Evolution of symbiosis in the Vibrionaceae: a combined approach using molecules and physiology. Int J Syst Evol Microbiol 53(Pt 6):2019–2026

    Article  CAS  Google Scholar 

  • Nishiguchi MK, Ruby EG, McFall-Ngai MJ (1998) Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in Sepiolid squid-vibrio symbioses. Appl Environ Microbiol 64(9):3209–3213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  Google Scholar 

  • Phillips HJ (1973) Dye exclusion tests for cell viability. In: Kruse PP, Patterson MK (eds) Tissue culture methods and applications. Academic, New York, pp 406–408

    Chapter  Google Scholar 

  • Pichon D, Gaia V, Norman MD, Boucher-Rodoni R (2005) Phylogenetic diversity of epibiotic bacteria in the accessory nidamental glands of squids (Cephalopoda: Loliginidae and Idiosepiidae). Mar Biol 147(6):1323–1332

    Article  Google Scholar 

  • Piel J, Butzke D, Fusetani N, Hui D, Platzer M, Wen G, Matsunaga S (2005) Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod 68:472–479

    Article  CAS  Google Scholar 

  • Pierantoni U (1917) Organsi luminosi, organi simbiotici e ghiandola nidamentale accessoria nei cefalopodi. Boll Soc Nat Napoli 30:30–36

    Google Scholar 

  • Rajan TV (2005) The eye does not see what the mind does not know: the bacterium in the worm. Perspect Biol Med 48:31–41

    Article  Google Scholar 

  • Rieder G, Fischer W, Haas R (2005) Interaction of Helicobacter pylori with host cells: function of secreted and translocated molecules. Curr Opin Microbiol 8(1):67–73

    Article  CAS  Google Scholar 

  • Schipp R, Martin AW, Liebermann H, Magnier Y (1985) Cytomorphology and function of pericardial appendages of Nautilus (Cephalopoda, Tetrabranchiata). Zoomorphology 105:16–29

    Article  Google Scholar 

  • Schipp R, Chung YS, Arnold JM (1990) Symbiotic bacteria in the coelom of Nautilus (Cephalopoda, Tetrabranchiata). Cell Tissue Res 219:585–604

    Google Scholar 

  • Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodernia dissolute. Appl Environ Microbiol 71(8):4840–4849

    Article  CAS  Google Scholar 

  • Sritharan V, Barker RH (1991) A simple method for diagnosing M. tuberculosis infection in clinical samples using PCR. Mol Cell Probes 5:385–395

    Article  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  CAS  Google Scholar 

  • Wimmer W, Perovic S, Kruse M, Schroder HC, Krasko A, Batel R, Muller WE (1999) Origin of the integrin-mediated signal transduction. Functional studies with cell cultures from the sponge Suberites domuncula. Eur J Biochem 260:156–165

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

Download references

Acknowledgments

We thank P. Joannot, S. Loueckote, A. Gerbault and C. Goiran for their help in providing N. macromphalus specimens from New-Caledonia. The help of C. Courties for flow cytometry analysis was highly appreciated. We thank A. Andouche and F. Ponton for helpful comments on this manuscript. This work was supported by a Bonus Quality Research grant from the Muséum National d’Histoire Naturelle (PARIS). The French Ministry for National Education and Research is also acknowledged for providing M. Pernice with a Ph.D. grant. The experiments complied with the current French laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Pernice.

Additional information

Communicated by S.A. Poulet, Roscoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pernice, M., Pichon, D., Domart-Coulon, I. et al. Primary co-culture as a complementary approach to explore the diversity of bacterial associations in marine invertebrates: the example of Nautilus macromphalus (Cephalopoda: Nautiloidea). Mar Biol 150, 749–757 (2007). https://doi.org/10.1007/s00227-006-0413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0413-2

Keywords

Navigation