Skip to main content
Log in

Pigment composition and size distribution of phytoplankton in a confined Mediterranean salt marsh ecosystem

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Pigment composition and size distribution of phytoplankton were analysed in a group of Mediterranean salt marshes, where hydrology is dominated by sudden inputs during sea storms, followed by long periods of confinement. These marshes are characterized by a low inorganic–organic nutrient ratio, and inorganic nitrogen is especially scarce due to denitrification. Nutrients were the main factor affecting phytoplankton biomass, while zooplankton grazing did not control either phytoplankton community composition, or their size distribution. The relative abundance of the different phytoplankton groups was analysed by correspondence analysis using the pigment composition measured by high-performance liquid chromatography (HPLC) and analysed with the CHEMTAX programme. In this analysis, phytoplankton pigment composition was correlated with two nutrient gradients. The first gradient was the ratio of nitrate–total nitrogen (TN), since the different phytoplankton groups were distributed according to their eco–physiological differences in nitrogen uptake. The second gradient was correlated with total nutrient loading. Biomass size distributions frequently showed a lack of intermediate sized nanophytoplankton (2.5–4 μm in diameter), and the importance of this lack of intermediate sizes correlated with dinoflagellate biomass. These results suggested that in confined environments, where nutrients are mainly in an organic form, dinoflagellates take advantage of their mixotrophy, by competing and grazing on smaller phytoplankters simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong RA (2003) A hybrid spectral representation of phytoplankton growth and zooplankton response: the “control rod” model of plankton interaction. Deep Sea Res (II Top Stud Oceanogr) 50:2895–2916

    Article  Google Scholar 

  • Badosa A, Boix D, Brucet S, Lopez-Flores R, Quintana XD (2006) Nutrients and zooplankton composition and dynamics in relation to the hydrological pattern in a confined Mediterranean salt marsh (NE Iberian Peninsula). Estuar Coast Shelf Sci 66:513–522

    Article  Google Scholar 

  • Bavestrello G, Arillo A, Calcinai B, Cattaneo-Vietti R, Cerrano C, Gaino E, Penna A, Sarà M (2000) Parasitic diatoms inside antartic sponges. Biol Bull 198:29–33

    Article  PubMed  CAS  Google Scholar 

  • Boix D (2000) Estructura i dinàmica de la comunitat animal aquàtica de l’estanyol temporani d’Espolla. Doctorate Thesis. Universitat de Girona, p 663

  • Britton RH, Crivelli AJ (1993) Wetlands of southern Europe and North Africa: Mediterranean wetlands. In: Whigman DF, Dykyjová D, Hejný S (eds) Wetlands of the world I: inventory, ecology and management. Kluwer, The Netherlands, pp 129–194

    Google Scholar 

  • Brucet S, Quintana XD, Moreno-Amich R, Boix D (2005) Changes in the shape of zooplankton biomass-size spectra at ecological scaling in a fluctuanting ecosystem (Empordà Wetlands, NE Spain). Vie Milieu 55:31–40

    Google Scholar 

  • Capblancq J (1990) Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments: an overview. Hydrobiologia 207:1–14

    Article  CAS  Google Scholar 

  • Cerón García MC, Fernández Sevilla JM, Ancién Fernández FG, Molina Grima E, García Camacho F (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12:239–248

    Article  Google Scholar 

  • Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biochemical cycles in the sea. Plenum, New York, pp 213–237

    Google Scholar 

  • Comín FA, Valiela I (1993) On the controls of phytoplankton abundance and production in coastal lagoons. J Coast Res 9:895–906

    Google Scholar 

  • Cruz-Pizarro L, Carrillo P (1991) Top-down regulation under different species-specific and size-structure grazer assemblages in an oligotrophic lake. In: Giussani G, Van Liere L, Moss B (eds) Ecosystem research in freshwater environment recovery. Pallanza, pp 23–37

  • Dickie LM, Kerr SR, Boudreau PR (1987) Size-dependent processes underlying regularities in ecosystem structure. Ecol Monogr 57:233–250

    Article  Google Scholar 

  • Dumont HJ, Van de Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from plankton, periphyton and benthos of continental waters. Oecologia 19:75–97

    Article  Google Scholar 

  • Fathi AA, Abdelzaher HMA, Flower RJ, Ramdani M, Kraïem MM (2001) Phytoplankton communities of North African wetlands lakes: the CASSARINA Project. Aquat Ecol 35:303–318

    Article  Google Scholar 

  • Franks PJS (2001) Phytoplankton blooms in a fluctuating environment: the roles of plankton response time scales and grazing. J Plankton Res 23:1433–1441

    Article  Google Scholar 

  • Gasiunaite ZR, Olenina I (1998) Zooplankton-phytoplankton interactions: a possible explanation of the seasonal succession in the Kursiu Marios lagoon. Hydrobiologia 363:333–339

    Article  Google Scholar 

  • Gasol JM, Del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar (Barc) 64:197–224

    Google Scholar 

  • Golterman HL (1999) Quantification of P-flux through shallow, agricultural and natural waters as found in wetlands of the Camargue (S-France). Hydrobiologia 392:29–39

    Article  CAS  Google Scholar 

  • Golterman HL (2000) Denitrification and a numerical modelling approach for shallow waters. Hydrobiologia 431:93–104

    Article  CAS  Google Scholar 

  • Granéli E, Turner JT (2002) Top-down regulation in ctenophore-copepod-ciliate-diatom-phytoflagellate communities in coastal waters: a mesocosm study. Mar Ecol Prog Ser 239:57–68

    Article  Google Scholar 

  • Granéli E, Carlsson P, Legrand C (1999) The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquat Ecol 33:17–27

    Article  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chimie, Weiheim

    Google Scholar 

  • Guelorget O, Perthuisot J-P, Lamy N, Lefebvre A (1994) Structure et organisation de l’étang de Thau d’après la faune benthique (macrofaune, méiofaune). Relations avec le confinement. Oceanol Acta 17:105–114

    Google Scholar 

  • Harrison WG, Wood LE (1988) Inorganic nitrogen uptake by marine picoplankton: Evidence for size partitioning. Limnol Oceanogr 33:468–475

    CAS  Google Scholar 

  • Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Isaksson A (1998) Phagotrophic phytoflagellates in lakes—a literature review. Arch Hydrobiol Spec Issues Advanc Limnol 51:63–90

    Google Scholar 

  • Ismael AA (2003) Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. J Plankton Res 25:193–202

    Article  Google Scholar 

  • Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226

    Article  Google Scholar 

  • Li A, Stoecker DK, Coats DW, Adam EJ (1996) Ingestion of fluorescently labeled and phycoerythrin-containing prey by mixotrophic dinoflagellates. Aquat Microb Ecol 10:139–147

    Article  Google Scholar 

  • Li A, Stoecker DK, Coats DW (2001) Use of the “food vacuole content” method to estimate grazing by the mixotrophic dinoflagellate Gyrodinium galatheanum on cryptophytes. J Plankton Res 23:303–318

    Article  Google Scholar 

  • Lohrenz SE, Carroll CL, Weidemann AD, Tuel M (2003) Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelf. Cont Shelf Res 23:1447–1464

    Article  Google Scholar 

  • López-Flores R, Garcés E, Boix D, Badosa A, Brucet S, Masó M, Quintana XD (2006) Comparative composition and dynamics of harmful dinoflagellates in Mediterranean salt marshes and nearby external marine waters. Harmful Algae (in press)

  • Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX-A program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    Article  CAS  Google Scholar 

  • Malley DF, Lawrence SG, Maclver MA, Findlay WJ (1989) Range of variation in estimates of dry weight for planktonic crustacea and rotifera from temperate north American lakes. Can Tech Rep Fish Aquat Sci 1666:0–49

    Google Scholar 

  • Malone TC (1980) Algal size and phytoplankton ecology. In: Morris I (ed) Physiological ecology of phytoplankton. Blackwell, Oxford, pp 433–463

    Google Scholar 

  • Moss B, McGowan S, Carvalho L (1994) Determination of phytoplankton crops by top-down and bottom-up mechanism in a group of English lakes, the West Midlands meres. Limnol Oceanogr 39:1020–1029

    Article  CAS  Google Scholar 

  • Muylaert K, Declerck S, Geenens V, Van Wichelen J, Degans H, Vandekerkhove J, Van der Gucht K, Vloemans N, Rommens W, Rejas D, Urrutia R, Sabbe K, Gillis M, Decleer K, De Meester L, Vyverman W (2003) Zooplankton, phytoplankton and the microbial food web in two turbid and two clearwater shallow lakes in Belgium. Aquat Ecol 37:137–150

    Article  Google Scholar 

  • Olson RJ, Vaulot D, Chisholm SW (1985) Marine phytoplankton distributions measured using shipboard flow cytometry. Deep-Sea Res 32:1273–1280

    Article  Google Scholar 

  • Olson RJ, Zettler ER, Anderson OK (1989) Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry. Cytometry 10:636–643

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Mayagoitia E, Rojo C, Rodrigo MA (2003) Controlling factors of phytoplankton assemblages in wetlands: an experimental approach. Hydrobiologia 502:177–186

    Article  Google Scholar 

  • Perez-Ruzafa A, Diego CM (1993) La teoría del confinamiento como modelo para explicar la estructura y zonación horizontal de las comunidades bentónicas en las lagunas costeras. Publ Espec Inst Esp Oceanogr 11:347–358

    Google Scholar 

  • Pérez-Ruzafa A, Gilabert J, Gutiérrez JM, Fernández AI, Marcos C (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475–476:359–369

    Article  Google Scholar 

  • Quintana XD, Moreno-Amich R, Comín FA (1998) Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part I. Differential confinement of nutrients. J Plankton Res 20:2089–2107

    Article  Google Scholar 

  • Quintana XD, Badosa A, Gesti J (2001) LIFE Project. Restoration and regulation of the lagoons and coastal systems of the Lower Ter. 8-11-2004. On line. http://www.torroella.org/life

  • Rodríguez J, Jiménez-Gómez F, Blanco JM, Figueroa FL (2002) Physical gradients and spatial variability of the size structure and composition of phytoplankton in the Gerlache Strait (Antarctica). Deep Sea Res (II Top Stud Oceanogr) 49:693–706

    Article  Google Scholar 

  • Ruttner-Kolisko A (1977) Suggestions for biomass calculations of plankton rotifers. Arch Hydrobiol–Beih Ergebn Limnol 8:71–76

    Google Scholar 

  • Schönborn W (1992) Comparative studies on the production Biology of protozona communities in freshwater and soil ecosystems. Arch Protistenkd 141:187–214

    Google Scholar 

  • Serrano L, Burgos MD, Díaz-Espejo A, Toja J (1999) Phosphorus inputs to wetlands following storm events after drought. Wetlands 19:318–326

    Article  Google Scholar 

  • Smock LA (1980) Relationships between body size and biomass of aquatic insects. Freshw Biol 10:375–383

    Article  Google Scholar 

  • Sommer U, Sommer F, Santer B, Jamieson C, Boersma M, Becker C, Hansen T (2001) Complementary impact of copepods and cladocerans on phytoplankton. Ecol Lett 4:550

    Article  Google Scholar 

  • Sprules WG, Goyke AP (1994) Size-based structure and production in the pelagia of lakes Ontario and Michigan. Can J Fish Aquat Sci 51:2603–2611

    Article  Google Scholar 

  • Sprules WG, Stockwell JD (1994) Size-based biomass and production models in the St Lawrence Great Lakes. ICES J Mar Sci 52:705–710

    Article  Google Scholar 

  • Stal LJ (2000) Cyanobacterial mats and stromatolites. The ecology of cyanobacteria. Their diversity in time and space. Kluwer, The Netherlands, pp 62–108

    Google Scholar 

  • Stoecker DK (1999) Mixotrophy among dinoflagellates. Eukaryot Microbiol 46:397–401

    Article  Google Scholar 

  • Stoecker DK, Li A, Coats DW, Gustafson DE, Nannen MK (1997) Mixotrophy in the dinoflagellate Prorocentrum minimum. Mar Ecol Prog Ser 152:1–12

    Article  Google Scholar 

  • Thingstad TF, Havskum H, Garde K, Riemann B (1996) On the strategy of “eating your competitor”: a mathematical analysis of algal mixotrophy. Ecology 77:2108–2118

    Article  Google Scholar 

  • Throndsen J (1995) Estimating cell numbers. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Paris, pp 63–80

    Google Scholar 

  • Utermöhl H (1931) Über das umgekehrte Mikroskop. Arch Hydrobiol 22:643–645

    Google Scholar 

  • Vanni MJ, Layne CD, Arnott SE (1997) “Top-down” trophic interactions in lakes: effects of fish on nutrients dynamics. Ecology 78:1–20

    Google Scholar 

  • Vidondo B, Prairie YT, Blanco JM, Duarte CM (1997) Some aspects of the analysis of the size spectra in aquatic ecology. Limnol Oceanogr 42:184–192

    Article  Google Scholar 

  • Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  PubMed  CAS  Google Scholar 

  • Winiwarter P, Cempel C (1992) Life symptoms: the behaviour of open systems with limited energy dissipation capacity and evolution. Syst Res 9:9–34

    Article  Google Scholar 

  • Yentsch CS, Phinney DA (1984) Observed changes in spectral signatures of natural phytoplankton population: the influence of nutrients availability. In: Holm-Hansen O, Bolis L, Gilles R (eds) Physiological ecology of phytoplankton. Springer, Berlin Heidelberg New York, pp 95–128

    Google Scholar 

  • Zapata M, Garrido JL (1991) Influence of injection conditions in reversed-phase high-performance liquid chromatography of chlorophylls and carotenoids. Chromatographia 31:589–594

    Article  CAS  Google Scholar 

  • Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Comisión de Investigación Científica y Técnica (CICYT), Programa de Recursos Naturales (ref. CGL2004-05433 / BOS) and by a BR grant of the University of Girona. Anonymous reviewers are thanked for their comments that led to the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío López-Flores.

Additional information

Communicated by S.A. Poulet, Roscoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Flores, R., Boix, D., Badosa, A. et al. Pigment composition and size distribution of phytoplankton in a confined Mediterranean salt marsh ecosystem. Mar Biol 149, 1313–1324 (2006). https://doi.org/10.1007/s00227-006-0273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0273-9

Keywords

Navigation