Advertisement

Marine Biology

, Volume 147, Issue 4, pp 965–977 | Cite as

Growth, mortality and disease susceptibility of oyster Ostrea edulis families obtained from brood stocks of different geographical origins, through on-growing in the Ría de Arousa (Galicia, NW Spain)

  • P. Mirella da Silva
  • José Fuentes
  • Antonio VillalbaEmail author
Research Article

Abstract

Infection by Bonamia ostreae has caused extensive mortalities of oysters Ostrea edulis through European and United States coasts for at least 25 years. The development of a bonamiosis-resistant strain seems a promising strategy to fight against the disease. As a first step, evaluation of variability in productive traits and disease susceptibility of European populations was performed to identify favourable oyster populations with which to start selective breeding in Galicia (NW Spain). Oysters taken from Greece, Ireland, Ortigueira (Galicia) and Coroso (Galicia) were used as brood stock, and 19 seed families were produced (4–5 families from each origin). The oyster families were used to assess variability through on-growing in an area of the Ría de Arousa heavily affected by bonamiosis. Results showed significant differences in growth, mortality and susceptibility to bonamiosis and other diseases, both between origins and between families under origins. Bonamiosis was associated with mortality in the late stage of oyster on-growing. Indications of natural selection of bonamiosis less-susceptible oysters due to the long exposure of the Ortigueira population to bonamiosis were found. Other symbionts and pathological conditions were detected, of which herpes-like viral infections and disseminated neoplasia could also cause mortality. An index of the overall incidence of pathological conditions (OIPC) was estimated for each family. A significant correlation between the OIPC and the cumulative mortality of the families was noted. On average, oysters from autochthonous origins showed better performance. The results obtained with the best-performing families suggest that the profitability of oyster farming in Galicia would improve, even under bonamiosis pressure, by using appropriate oyster spat.

Keywords

Tray Cumulative Mortality Brood Stock Oyster Population Selective Breeding Programme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

María Isabel Seoane and Valentín Rodríguez led all the work to produce oyster spat in the CIMA hatchery facilities, with the technical assistance of Teresa Andrade, María Sandra Burque, Victoria Castro and Azucena Rodríguez-Patón. The Company “Jose Maria Daporta Leiro e Hijos, S.L.” procured the oysters from Ireland, Greece and Coroso, and allowed the use of one culture raft. The shellfish farmers, Luis Nogueira, José L. Nogueira and Manuel Nogueira, helped with sampling. Gonzalo Mosquera and the “Confraría de Pescadores Nosa Señora do Carmen de Cariño” supplied the oysters from Ría de Ortigueira. Inke Sunila performed the in-situ TUNEL technique for apoptosis detection. Elena Penas, María Isabel Meléndez, Marta Andrade, Pilar Comesaña, Isidro Fernández, Ana Isabel González, María Victoria Gregorio, Ana Catalina Iglesias and Carlota Rodríguez provided field and laboratory technical assistance. This work was partially supported by funds of the “Secretaría Xeral de Investigación e Desenvolvemento Tecnolóxico da Xunta de Galicia”, through the project PGIDT-CIMA 01/1. P.M. da Silva was supported by successive scholarships from the “Agencia Española de Cooperación Internacional” (AECI) and the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) of the Brazilian Government.

References

  1. Alderman DJ (1981) Parasite “X”, new disease threatens European beds. Fish Farmer 4:1–31Google Scholar
  2. Alderman DJ, van Banning P, Pérez-Colomer A (1977) Two European oyster (Ostrea edulis) mortalities associated with an abnormal haemocytic condition. Aquaculture 10:335–340CrossRefGoogle Scholar
  3. Andreu B (1968) Pesquería y cultivo de mejillones y ostras en España. Publ Téc Junta Est Pesca 7:303–320Google Scholar
  4. Andrews JD (1984) Epizootiology of diseases of oysters (Crassostrea virginica), and parasites of associated organisms in Eastern North America. Helgol Wiss Meeresunters 37:149–166Google Scholar
  5. Anonymous (1991) Council Directive 91/67/EEC of 28 January 1991 concerning the animal health conditions governing the placing on the market of aquaculture animals and products. Off J Eur Communities L 46:1–18Google Scholar
  6. Anonymous (1994) Commission Decision 94/306/EC of 16 May 1994 laying down the sampling plans and diagnostic methods for the detection and confirmation of certain mollusc diseases. Off J Eur Communities L 133:51–53Google Scholar
  7. Anonymous (2002) Diagnostic manual for aquatic animal diseases. Office Internationale des Epizooties, ParisGoogle Scholar
  8. Arzul I, Nicolas J-L, Davison A, Renault T (2001a) French scallops: a new host for ostreid herpesvirus-1. Virology 290:342–349CrossRefPubMedGoogle Scholar
  9. Arzul I, Renault T, Lipart C (2001b) Experimental herpes-like viral infections in marine bivalves: demonstration of interspecies transmission. Dis Aquat Org 46:1–6PubMedGoogle Scholar
  10. Azevedo C, Montes J, Corral L (1999) A revised description of Haplosporidium armoricanum, parasite of Ostrea edulis L from Galicia, northwestern Spain, with special reference to the spore-wall filaments. Parasitol Res 85:977–983CrossRefPubMedGoogle Scholar
  11. Bachère E, Grizel H (1983) Mise en evidence d’Haplosporidium sp. (Haplosporida—Haplosporidiidae) parasite de l’huitre plate Ostrea edulis L. Rev Trav Inst Pêches Marit 46:226–232Google Scholar
  12. Balouet G, Poder M, Cahour A, Auffret M (1986) Proliferative hemocytic condition in European flat oysters (Ostrea edulis) from Breton coasts: a 6-year survey. J Invertebr Pathol 48:208–215CrossRefGoogle Scholar
  13. Baud JP, Gérard A, Naciri-Graven Y (1997) Comparative growth and mortality of Bonamia ostrea-resistant and wild flat oysters, Ostrea edulis, in an intensive system. Mar Biol 130:71–79CrossRefGoogle Scholar
  14. Beattie JH, Davis JP, Downing SL, Chew KK (1988) Summer mortality of Pacific oysters. Am Fish Soc Spec Publ 18:265–268Google Scholar
  15. Bower SM, McGladdery SE, Price IM (1994) Synopsis of infectious diseases and parasites of commercially exploited shellfish. Annu Rev Fish Dis 4:1–199CrossRefGoogle Scholar
  16. Carnegie RB, Barber BJ, Culloty SC, Figueras AJ, Distel DL (2000) Development of a PCR assay for detection of the oyster pathogen Bonamia ostreae and support for its inclusion in the Haplosporidia. Dis Aquat Org 42:199–206PubMedGoogle Scholar
  17. Cochennec N, Le Roux F, Berthe F, Gerard A (2000) Detection of Bonamia ostreae based on small subunit ribosomal probe. J Invertebr Pathol 76:26–32CrossRefPubMedGoogle Scholar
  18. Comps M (1983) Recherches histologiques et cytologiques sur les infections intracellulaires des mollusques bivalves marins. PhD Thesis, Université des Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  19. Comps M, Cochennec N (1993) A herpes-like virus from the European oyster Ostrea edulis L. J Invertebr Pathol 62:201–203CrossRefGoogle Scholar
  20. Comps M, Tigé G, Duthoit JL, Grizel H (1979) Micro-organisme de type rickettsien chez les huîtres Crassostrea gigas et Ostrea edulis L. Haliotis 8:317–321Google Scholar
  21. Conover WJ (1999) Practical nonparametric statistic. Wiley, New YorkGoogle Scholar
  22. Culloty SC, Mulcahy MF (2001) Living with bonamiasis: Irish research since 1987. Hydrobiologia 465:181–186CrossRefGoogle Scholar
  23. Culloty SC, Cronin MA, Mulcahy MF (2001) An investigation into the relative resistance of Irish flat oysters Ostrea edulis L. to the parasite Bonamia ostreae (Pichot et al. 1980). Aquaculture 199:229–244CrossRefGoogle Scholar
  24. Dare PJ (1982) The susceptibility of seed oysters of Ostrea edulis L. and Crassostrea gigas Thunberg to natural infestation by the copepod Mytilicola intestinalis Steuer. Aquaculture 26:201–211CrossRefGoogle Scholar
  25. da Silva PM, Villalba A (2004) Comparison of light microscopic techniques for the diagnosis of the infection of the European flat oyster Ostrea edulis by the protozoan Bonamia ostreae. J Invertebr Pathol 85:97–104CrossRefPubMedGoogle Scholar
  26. Davis CV, Barber BJ (1999) Growth and survival of selected lines of eastern oysters, Crassostrea virginica (Gmelin, 1791) affected by juvenile oyster disease. Aquaculture 178:253–271CrossRefGoogle Scholar
  27. Elston RA (1986) An intranuclear pathogen (nuclear inclusion X (NIX)) associated with massive mortalities of the Pacific Razor clam, Siliqua patula. J Invertebr Pathol 47:93–104CrossRefPubMedGoogle Scholar
  28. Elston RA, Kent ML, Wilkinson MT (1987) Resistance of Ostrea edulis to Bonamia ostreae infection. Aquaculture 64:237–242CrossRefGoogle Scholar
  29. Elston RA, Moore JD, Brooks K (1992) Disseminated neoplasia of bivalve mollusc. Rev Aquat Sci 6:405–466Google Scholar
  30. Figueras AJ (1991) Bonamia status and its effects in cultured flat oysters in the Ría de Vigo, Galicia (NW Spain). Aquaculture 93:225–233CrossRefGoogle Scholar
  31. Ford SE, Haskin HH (1982) History and epizootiology of Haplosporidium nelsoni (MSX), an oyster pathogen in Delaware Bay, 1957–1980. J Invertebr Pathol 40:118–141CrossRefGoogle Scholar
  32. Ford SE, Haskin HH (1988) Management strategies for MSX (Haplosporidium nelsoni) disease in Eastern oysters. Am Fish Soc Spec Publ 18:249–256Google Scholar
  33. González R, González G (1985) Experiencia sobre cultivo en batea de la ostra plana (Ostrea edulis), en la Ría de Arosa (Galicia). Bol Inst Esp Oceanogr 2:9–16Google Scholar
  34. Grizel H, Comps M, Bonami JR, Cousserans F, Duthoit JL, Le Pennec MA (1974) Recherche de l’agent de la maladie de la glande digestive de Ostrea edulis Linné. Bull Inst Pêches Marit 240:7–30Google Scholar
  35. Grizel H, Bachère E, Mialhe E, Tigé G (1986) Solving parasite-related problems in cultured molluscs. In: Howell MJ (ed) Parasitoloy, Quo vadit? Proc 6th Int Congr Parasitol. Australian Academy of Science, Canberra, pp 301–308Google Scholar
  36. Gulka G, Chang PW (1984) Pathogenicity and infectivity of a rickettsia-like organism in the sea scallop, Placopecten magellanicus. J Fish Dis 8:309–318Google Scholar
  37. Harshbarger JC, Chang SC, Otto SV (1977) Chlamydiae (with phages), micoplasmas and rickettsiae in Chesapeake Bay bivalves. Science 196:666–668PubMedGoogle Scholar
  38. Hine PM, Thorne T (1997) Replication of herpes-like viruses in haemocytes of adult flat oysters Ostrea angasi: an ultrastructural study. Dis Aquat Org 29:189–196Google Scholar
  39. Hine PM, Wesney B, Besant P (1998) Replication of a herpes-like virus in larvae of the flat oyster Tiostrea chilensis at ambient temperatures. Dis Aquat Org 32:161–171Google Scholar
  40. His E (1979) Mytilicolides et myicolides parasites des lamellibranches d’intérêt comercial du Bassin d’Arcachon. Haliotis 8:99–102Google Scholar
  41. Howard DW, Smith CS (1983) Histological techniques for bivalve molluscs. NOAA technical memorandum NMFS-F/NEC-25. Woods Hole, MassGoogle Scholar
  42. Hudson EB, Hill BJ (1991) Impact and spread of bonamiasis in the UK. Aquaculture 93:279–285CrossRefGoogle Scholar
  43. Lauckner G (1983) Bivalvia. In: Kinne O (ed) Diseases of marine animals. Biologische Anstalt Helgoland, Hamburg, pp 477–962Google Scholar
  44. Launey S, Barre M, Gerard A, Naciri-Graven Y (2001) Population bottleneck and effective size in Bonamia ostreae resistant populations of Ostrea edulis as inferred by microsatellite markers. Genet Res Camb 78:259–270Google Scholar
  45. Launey S, Ledu C, Boudry P, Bonhomme F, Naciri-Graven Y (2002) Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. J Hered 93:331–338CrossRefPubMedGoogle Scholar
  46. Le Gall G, Ghagot D, Mialhe E, Grizel H (1988) Branchial rickettsiales-like infection associated with a mass mortality of sea scallop Pecten maximus. Dis Aquat Org 4:229–232Google Scholar
  47. Martin AG, Gérard A, Cochennec N, Langlade A (1993) Selecting flat oysters, Ostrea edulis, for survival against the parasite Bonamia ostreae: assessment of the resistance of a first selected generation. In: Barnabé G, Kestemont P (eds) Production, environment and quality, Bourdeaux Aquaculture 92 (Spec Publ no 18). European Aquaculture Society, Ghent, pp 547–554Google Scholar
  48. Montes J, Acosta CP, Guerra A (1989) Oyster mortality in Galicia (NW Spain). In: De Pauw N, Jaspers E, Ackefors H, Wilkins N (eds) Aquaculture a biotechnology in progress. European Aquaculture Society, Bredene, pp 941–948Google Scholar
  49. Montes J, Ferro-Soto B, Conchas RF, Guerra A (2003) Determining culture strategies in populations of the European flat oyster, Ostrea edulis, affected by bonamiosis. Aquaculture 220:175–182CrossRefGoogle Scholar
  50. Moore JD, Cherr GN, Friedman CS (2001) Detection of ‘Candidatus Xenohaliots californiensis’ (Rickettsiales-like prokaryote) inclusions in tissue squashes of abalone (Haliotis spp.) gastrointestinal epithelium using a nucleic acid fluorochrome. Dis Aquat Org 46:147–152PubMedGoogle Scholar
  51. Naciri-Graven Y, Martin AG, Baud JP, Renault T, Gérard A (1998) Selecting the flat oyster Ostrea edulis (L.) for survival when infected with the parasite Bonamia ostreae. J Exp Mar Biol Ecol 224:91–107CrossRefGoogle Scholar
  52. Naciri-Graven Y, Haure J, Gérard A, Baud JP (1999) Comparative growth of Bonamia ostreae resistant and wild flat oyster Ostrea edulis in an intensive system. II. Second year of the experiment. Aquaculture 171:195–208CrossRefGoogle Scholar
  53. Nell JA, Hand RE (2003) Evaluation of the progeny of second-generation Sydney rock oyster Saccostrea glomerata (Gould, 1850) breeding lines for resistance to QX disease Marteilia sydneyi. Aquaculture 228:27–35CrossRefGoogle Scholar
  54. Nell JA, Smith IR, McPhee CC (2000) The Sydney rock oyster Saccostrea glomerata (Gould, 1850) breeding programme: progress and goals. Aquaculture Res 31:45–49CrossRefGoogle Scholar
  55. Norton JH, Shepherd MA, Abdon-Naguit MR, Lindsay S (1993) Mortalities in the giant clam Hippopus hippopus associated with Rickettsiales-like organisms. J Invertebr Pathol 62:207–209CrossRefGoogle Scholar
  56. Otero M (1984) Seguimiento de dos poblaciones de semilla de ostra plana (Ostrea edulis L.) en dos polígonos de cultivo de la Ría de Ares—Betanzos. Seminario de Estudos Galegos. Actas do Primeiro Seminario de Ciencias do Mar: As Rías Galegas. Ediciós do Castro, Sada, A CoruñaGoogle Scholar
  57. Peters EC (1988) Recent investigations on the disseminated sacormas of marine bivalve molluscs. Am Fish Soc Spec Publ 18:74–92Google Scholar
  58. Pichot Y, Comps M, Deltreil J-P (1979) Recherches sur Haplosporidium sp. (Haplosporida, Haplosporidiidae) parasite de l’huitre plate Ostrea edulis L. Rev Trav Inst Pêches Marit 43:405–408Google Scholar
  59. Pichot Y, Comps M, Tige G, Grizel H, Rabouin M (1980) Recherches sur Bonamia ostreae gen. n., sp. n., parasite nouveau de l’huitre plate Ostrea edulis L. Rev Trav Inst Pêches Marit 43:131–140Google Scholar
  60. Polanco E, Montes J, Outon J, Melendez MI (1984) Situation pathologique du stock d’huîtres plates en Galice (Espagne) en relation avec Bonamia ostreae. Haliotis 14:91–95Google Scholar
  61. Ragone-Calvo LM, Calvo GW, Burreson EM (2003) Dual disease resistance in a selectively bred eastern oyster, Crassostrea virginica, strain tested in Chesapeake Bay. Aquaculture 220:69–87CrossRefGoogle Scholar
  62. Renault T, Le Deuff RM, Cochennec N, Maffart P (1994) Herpesviruses associated with mortalities among pacific oyster, Crassostrea gigas, in France—comparative study. Rev Méd Vét 145:735–742Google Scholar
  63. Renault T, Le Deuff RM, Chollet B, Cochennec N, Gérard A (2000) Concomitant herpes-like virus infections in hatchery-reared larvae and nursery-cultured spat Crassostrea gigas and Ostrea edulis. Dis Aquat Org 42:173–183PubMedGoogle Scholar
  64. Román G (1992) Efecto del ciclo reproductivo y el acondicionamiento en el desarrollo larvario, la fijación y el posterior crecimiento de la semilla de Ostrea edulis Linné 1758. Publ Especiales Inst Español Oceanogr 9:1–172Google Scholar
  65. Saavedra C, Zapata C, Alvarez G (1995) Geographical patterns of variability at allozyme loci in the European oyster Ostrea edulis. Mar Biol 122:95–104CrossRefGoogle Scholar
  66. Sokal RR, Rohlf FJ (1981) Biometry. Freeman, New YorkGoogle Scholar
  67. Tigé G, Grizel H (1984) Essai de contamination d’Ostrea edulis Linné par Bonamia ostreae (Pichot et al, 1979) en Rivière de Crach (Morbihan). Rev Trav Inst Pêches Marit 46:307–314Google Scholar
  68. Tigé G, Grizel H, Rabouin M, Cochennec N, Audic G, Langlade A (1982) Maladie Hemocitaire de l’huître plate causée par Bonamia ostreae: évolution de la situation epizootiologique en Bretagne au cours de l’année 1981. Sci Pêches. Bull Inst Pêches Marit 328:3–13Google Scholar
  69. van Banning P (1977) Minchinia armoricana sp. nov. (Haplosporida), a parasite of the European flat oyster, Ostrea edulis. J Invertebr Pathol 30:199–206CrossRefGoogle Scholar
  70. van Banning P (1979a) Protistan parasites observed in the European flat oyster (Ostrea edulis) and the cockle (Cerastoderma edule) from some coastal areas of the Netherlands. Haliotis 8:33–37Google Scholar
  71. van Banning P (1979b) Haplosporidium diseases of imported oysters, Ostrea edulis, in Dutch estuaries. Mar Fish Rev 41:8–18Google Scholar
  72. van Banning P (1988) Management strategies to control diseases in the Dutch culture of edible oysters. Am Fish Soc Spec Publ 18:243–245Google Scholar
  73. van Banning P (1991) Observations on bonamiosis in the stock of the European flat oyster, Ostrea edulis, in the Netherlands, with special reference to the recent developments in Lake Grevelingen. Aquaculture 93:205–211CrossRefGoogle Scholar
  74. Villalba A, Mourelle SG, Carballal MJ, López C (1997) Symbionts and diseases of farmed mussels Mytilus galloprovinvialis throughout the culture process in the Rías of Galicia (NW Spain). Dis Aquat Org 31:127–139Google Scholar
  75. Villalba A, Carballal MJ, López C, Cabada A, Corral L, Azevedo C (1999) Branchial rickettsia-like infection associated with clam Venerupis rhomboides mortality. Dis Aquat Org 36:53–60Google Scholar
  76. Virvilis C, Angelidis P, Photis G (2003) Presence of the parasite Marteilia sp. in the shellfish of the Thermaikos gulf in northern Greece. Bull Eur Assoc Fish Pathol 23:157–162Google Scholar
  77. Vivarès CP, Brehélin M, Cousserans J-R (1982) Mise en évidence d’une nouvelle haplosporidie parasite de l’huître plate Ostrea edulis L. C R Acad Sci Paris 295:127–130Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • P. Mirella da Silva
    • 1
  • José Fuentes
    • 1
  • Antonio Villalba
    • 1
    Email author
  1. 1.Centro de Investigacións MariñasConsellería de Pesca e Asuntos MarítimosVilanova de ArousaSpain

Personalised recommendations