Skip to main content

Advertisement

Log in

Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Morpho-functional features potentially involved in defence mechanisms against fish predators (i.e. attachment tenacity, spine length, and test robustness and thickness) have been assessed in two Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula. All four morpho-functional features were significantly and positively related to individual size for both species of sea urchins. Test robustness (i.e. static load needed to break sea urchin tests) was significantly greater for A. lixula (from 3,450 to 15,000 g depending on size) than for P. lividus (1,180–11,180 g). Attachment tenacity (i.e. force needed to dislodge sea urchins from the rocky substrate) was greater in A. lixula (280–3,300 g) than in P. lividus (110–1,450 g), and the difference tended to decrease in relation to smaller sea urchin size. Spine length was greater in A. lixula (1.5–2.9 cm) than in P. lividus (0.5–2.3 cm), but the difference decreased for larger sea urchin size. Test thickness was slightly greater (but not significantly) in A. lixula (0.35–1.10 mm) than in P. lividus (0.12–0.90 mm). These results provide evidence that morpho-functional features of sea urchins could be involved in affecting predation rates by fishes upon P. lividus and A. lixula, with potential implications for the population structure and distribution patterns of the two sea urchins in shallow rocky reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Boudouresque CF, Verlaque M (2001) Ecology of Paracentrotus lividus. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. Elsevier, Amsterdam, pp 177–216

  • Box GEP, Cox DR (1964) An analysis of transformation. J R Stat Soc Ser B 26:211–243

    Google Scholar 

  • Bulleri F, Benedetti-Cecchi L, Cinelli F (1999) Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the northwest Mediterranean. J Exp Mar Biol Ecol 241:81–95

    Article  Google Scholar 

  • Bulleri F, Bertocci I, Micheli F (2002) Interplay of encrusting coralline algae and sea urchins in maintaining alternative habitats. Mar Ecol Prog Ser 243:101–109

    Google Scholar 

  • Coleman RA, Browne M, Theobalds T (2004) Aggregation as a defense: limpet tenacity changes in response to simulated predator attack. Ecology 85:1153–1159

    Google Scholar 

  • Connell JH (1972) Community interactions on marine rocky intertidal shores. Annu Rev Ecol Syst 3:169–192

    Article  Google Scholar 

  • Estes JA, Duggins DO (1995) Sea otters and kelp forests in Alaska: generality and variation in a community ecology paradigm. Ecol Monogr 65:75–100

    Google Scholar 

  • Francour P, Boudouresque CF, Harmelin JG, Harmelin-Vivien ML, Quignard JP (1994) Are the Mediterranean waters becoming warmer? Information from biological indicators. Mar Poll Bull 28:523–526

    Article  Google Scholar 

  • Frantzis A, Berthon JF, Maggiore F (1988) Relation trophique entre les oursins Arbacia lixula et Paracentrotus lividus (Echinoidea regularia) et le phytobenthos infralittoral superficiel de la baie de Port-Cros (Var, France). Sci Rep Port-Cros Natl Park 14:81–140

  • Guidetti P (2004a) Consumers of sea urchins, Paracentrotus lividus and Arbacia lixula, in shallow Mediterranean rocky reefs. Helgol Mar Res 58:110–116

    Article  Google Scholar 

  • Guidetti P (2004b) Controllo ‘top-down’ in comunità marine di substrato roccioso fotofilo in Mar Mediterraneo. PhD dissertation, University of Lecce, Italy

  • Guidetti P (2004c) Trophic cascades and underlying mechanisms in the Mediterranean rocky sublittoral. In: Gaggi C, Nicolardi V, Santoni S (eds) Abstract book of the 24th Congress of the Italian Society of Ecology, Siena, pp 17–18

  • Guidetti P, Boero F (2004) Effects of the desertification caused by Lithophaga lithophaga (Mollusca) fishery on adult and juvenile abundance of a Mediterranean rocky-reef fish. Mar Poll Bull 48:978–982

    Article  CAS  Google Scholar 

  • Guidetti P, Fraschetti S, Terlizzi A, Boero F (2003) Distribution patterns of sea urchins and barrens in shallow Mediterranean rocky reefs impacted by the illegal fishery of the rock-boring mollusc Lithophaga lithophaga. Mar Biol 143:1135–1142

    Article  Google Scholar 

  • Guidetti P, Terlizzi A, Boero F (2004) Effects of the edible sea urchin Paracentrotus lividus fishery along the Apulian rocky coasts (SE Italy, Mediterranean Sea). Fish Res 66:278–297

    Article  Google Scholar 

  • Hagen NT (1992) Macroparasitic epizootic disease: a potential mechanism for the termination of sea urchin outbreaks in northern Norway. Mar Biol 114:469–478

    Article  Google Scholar 

  • Hart MW, Scheibling RE (1988) Heat waves, baby booms, and the destruction of kelp beds by sea urchins. Mar Biol 99:167–176

    Article  Google Scholar 

  • Hereu B (2004) The role of trophic interactions between fishes, sea urchins and algae in the northwestern Mediterranean rocky infralittoral. PhD dissertation, Universitat de Barcelona, Spain

  • Hereu B, Zabala M, Linares C, Sala E (2004) Temporal and spatial variability in settlement of the sea urchin Paracentrotus lividus in the NW Mediterranean. Mar Biol 144:1011–1018

    Article  Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E (2005) The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins. Mar Biol 146:293–299

    Article  Google Scholar 

  • Huitema BE (1980) Analysis of covariance and alternatives. Wiley Interscience, New York

  • Johnson PO, Neyman J (1936) Tests of certain linear hypotheses and their application to some educational problems. Stat Res Mem 1:57–93

    Google Scholar 

  • Kempf M (1962) Recherches d’écologie comparée sur Paracentrotus lividus (Lmk) et Arbacia lixula (L). Rec Trav St Mar Endoume 25:47–115

    Google Scholar 

  • Lawrence JM (1975) On the relationships between marine plants and sea urchins. Oceanogr Mar Biol 13:213–286

    Google Scholar 

  • Leinaas HP, Christie H (1996) Effects of removing sea urchins (Strongylocentrotus droebachiensis): stability of the barren state and succession of kelp forest recovery in the east Atlantic. Oecologia 105:524–536

    Article  Google Scholar 

  • McClanahan TR, Kurtis JD (1991) Population regulation of the rock-boring sea urchin Echinometra mathaei (de Blainville). J Exp Mar Biol Ecol 147:121–146

    Article  Google Scholar 

  • McClanahan TR, Shafir SH (1990) Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. Oecologia 83:362–370

    Google Scholar 

  • Palacìn C, Giribet G, Carner S, Dantart L, Turin X (1998) Low density of sea urchins influence the structure of algal assemblages in the western Mediterranean. J Sea Res 39:281–290

    Article  Google Scholar 

  • Pinnegar JK, Polunin NVC, Francour P, Badalamenti F, Chemello R, Harmelin-Vivien ML, Hereu B, Milazzo M, Zabala M, D’Anna G, Pipitone C (2000) Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environ Conserv 27:179–200

    Article  Google Scholar 

  • Ruitton S, Francour P, Boudouresque CF (2000) Relationships between algae, benthic herbivorous invertebrates and fishes in rocky sublittoral communities of a temperate sea (Mediterranean). Estuar Coast Shelf Sci 50:217–230

    Article  Google Scholar 

  • Sala E (1997) Fish predators and scavengers of the sea urchin Paracentrotus lividus in protected areas of the north-west Mediterranean Sea. Mar Biol 129:531–539

    Article  Google Scholar 

  • Sala E (2004) The past and present topology and structure of Mediterranean subtidal rocky-shore food webs. Ecosystems 7:333–340

    Article  Google Scholar 

  • Sala E, Zabala M (1996) Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Prog Ser 140:71–81

    Google Scholar 

  • Sala E, Boudouresque CF, Harmelin-Vivien ML (1998a) Fishing, trophic cascades, and the structure of algal assemblages: evaluation of an old but untested paradigm. Oikos 82:425–439

    Google Scholar 

  • Sala E, Ribes M, Hereu B, Zabala M, Alvà V, Coma R, Garrabou J (1998b) Temporal variability in abundance of the sea urchins Paracentrotus lividus and Arbacia lixula in the northwestern Mediterranean: comparison between a marine reserve and an unprotected area. Mar Ecol Prog Ser 168:135–145

    Google Scholar 

  • Scheibling RE (1986) Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia. Oecologia 68:186–198

    Article  Google Scholar 

  • Scheibling RE (1996) The role of predation in regulating sea urchin populations in eastern Canada. Oceanol Acta 19:421–430

    Google Scholar 

  • Shears NT, Babcock RC (2002) Marine reserves demonstrate top-down control of community structure on temperate reefs. Oecologia 132:131–142

    Article  Google Scholar 

  • Strathmann RR (1981) The role of spines in preventing structural damage to echinoid test. Paleobiology 7:400–406

    Google Scholar 

  • Tegner MJ, Dayton PK (1977) Sea urchin recruitment patterns and implications of commercial fishing. Science 196:324–326

    CAS  PubMed  Google Scholar 

  • Tegner MJ, Dayton PK (1981) Population structure, recruitment and mortality of two sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in kelp forests. Mar Ecol Prog Ser 5:255–268

    Google Scholar 

  • Tollrian R, Harvell CD (1999) The evolution of inducible defenses: current ideas. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, NJ, pp 306–322

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Verlaque M (1987) Relations entre Paracentrotus lividus (Lamarck) et le phytobenthos de Mediterranée occidentale. In: Boudouresque CF (ed) Colloque International sur Paracentrotus lividus et les oursins comestibles. GIS Posidonie, Marseille, pp 5–36

  • Wilcox RR (1987) New designs in analysis of variance. Annu Rev Psychol 38:29–60

    Article  Google Scholar 

  • Witman JD, Dayton PK (2001) Rocky subtidal communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, MA, pp 339–366

Download references

Acknowledgements

This research was carried out within the framework of the projects MARBEF (EU Network of Excellence) and FIRB 2003–2005 “Biodiversity and community organization in different environmental contexts”. Many thanks are due to F. Bulleri for his critical reading of the draft, and the two anonymous referees for their helpful comments. The experiments complied with the current laws of Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Guidetti.

Additional information

Communicated by R. Cattaneo-Vietti, Genova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guidetti, P., Mori, M. Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators. Marine Biology 147, 797–802 (2005). https://doi.org/10.1007/s00227-005-1611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-1611-z

Keywords

Navigation