Skip to main content

Advertisement

Log in

Effects of diet, ultraviolet exposure, and gender on the ultraviolet absorbance of fish mucus and ocular structures

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) radiation can be damaging to fish skin and ocular components. Coral reef fishes are regularly exposed to potentially harmful radiation. It was recently discovered that tropical marine fishes possess UV-absorbing compounds in their mucus. This experiment demonstrates significant effects of both diet and ultraviolet exposure on the UV-absorbing compounds in the mucus of a tropical wrasse, Thalassoma duperrey. Fish that are exposed to UV radiation increase the UV absorbance of their mucus only if UV-absorbing compounds are provided in their diet. Fish that are protected from UV radiation decrease the UV absorbance of their mucus regardless of diet. Mucus from female T. duperrey absorbed less UV and females had higher rates of skin damage than males. Females sequester UV-absorbing compounds in their pelagic eggs as well as their epithelial mucus, whereas males do not sequester these compounds in the testes. Spectral transmission through the whole eye was not affected by diet or UV manipulations, but corneal tissue transmission decreased significantly in the UV-exposed individuals. These results demonstrate that coral reef fish can adapt to UV exposure, so long as UV-absorbing compounds are available in the diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4

Similar content being viewed by others

References

  • Adams NL (2001) UV radiation evokes negative phototaxis and covering behavior in the sea urchin Strongylocentrotus droebachiensis. Mar Ecol Prog Ser 213:87–95

    Google Scholar 

  • Adams NL, Shick JM, Dunlap WC (2001) Selective accumulation of mycosporine-like amino acids in ovaries of the green sea urchin, Strongylocentrotus droebachiensis, is not affected by ultraviolet radiation. Mar Biol 138:267–280

    Article  CAS  Google Scholar 

  • Ahmed FE, Setlow RB (1993) Ultraviolet radiation-induced DNA damage and its photorepair in the skin of the platyfish Xiphophorus. Cancer Res 53:2249–2255

    CAS  PubMed  Google Scholar 

  • Banaszak AT, Lesser MP (1995) Survey of mycosporine-like amino acids in macrophytes in Kane’ohe Bay. In: Gulko D, Jokiel PL (eds) Ultraviolet radiation and coral reefs (Vol UNIHI-Seagrant-CR-95-03) Sea Grant Publication, Honolulu, Hawaii, pp 171–179

  • Banaszak AT, Lesser MP, Kuffner IB, Ondrusek M (1998) Relationship between ultraviolet (UV) radiation and mycosporine-like amino acids (MAAs) in marine organisms. Bull Mar Sci 63:617–628

    Google Scholar 

  • Bandaranayake WM, Des Rocher A (1999) Role of secondary metabolites and pigments in the epidermal tissues, ripe ovaries, viscera, gut contents and diet of the sea cucumber Holothuria atra. Mar Biol 133:163–169

    CAS  Google Scholar 

  • Bullock AM, Roberts RJ, Waddington P (1983) Sunburn lesions in koi carp. Vet Rec 112:551

    CAS  PubMed  Google Scholar 

  • Buma AGJ, de Boer MK, Boelen P (2001) Depth distributions of DNA damage in Antarctic marine phyto- and bacterioplankton exposed to summertime UV radiation. J Phycol 37:200–208

    Article  CAS  Google Scholar 

  • Carefoot TH, Harris M, Taylor BE, Donovan D, Karentz D (1998) Mycosporine-like amino acids: possible UV protection in eggs of the sea hare Aplysia dactylomela. Mar Biol 130:389–396

    CAS  Google Scholar 

  • Carefoot TH, Karentz D, Pennings SC, Young CL (2000) Distribution of mycosporine-like amino acids in the sea hare Aplysia dactylomela: effect of diet on amounts and types sequestered over time in tissues and spawn. Comp Biochem Physiol C Toxicol Pharmacol 126:91–104

    Article  CAS  PubMed  Google Scholar 

  • Carreto JI, Carignan MO, Daleo G, DeMarco SG (1990) Occurrence of mycosporine-like amino acids in the red-tide dinoflagellate Alexandrium excavatum: UV-photoprotective compounds? J Plankton Res 12:909–921

    CAS  Google Scholar 

  • Carroll AK, Shick JM (1996) Dietary accumulation of UV-absorbing mycosporine-like amino acids (MAAs) by the green sea urchin (Strongylocentrotus droebachiensis). Mar Biol 124:561–569

    CAS  Google Scholar 

  • Chioccara F, Della Galla A, De Rosa M, Novellino E, Prota G (1980) Mycosporine aminoacids and related compounds from the eggs of fishes. Bull Soc Chim Belg 89:1101–1106

    CAS  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    CAS  Google Scholar 

  • Cullen AP, Monteith-McMaster CA (1993) Damage to the rainbow trout (Oncorhynchus mykiss) lens following an acute dose of UVB. Curr Eye Res 12: 97–106

    Google Scholar 

  • Cullen AP, Monteith-McMaster CA, Sivak JG (1994) Lenticular changes in rainbow trout following chronic exposure to UV radiation. Curr Eye Res 13:731–737

    CAS  PubMed  Google Scholar 

  • DeKoven DL, Nunez JM, Lester SM, Conklin DE, Marty GD, Parker LM, Hinton DE (1992) A purified diet for Medaka (Oryzias latipes): refining a fish model for toxicological research. Lab Anim Sci 42:180–189

    CAS  PubMed  Google Scholar 

  • Dunlap WC, Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34:418–430

    Article  Google Scholar 

  • Dunlap WC, Chalker BE, Oliver JK (1986) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia III. UV-B absorbing compounds. J Exp Mar Biol Ecol 104:239–248

    Article  Google Scholar 

  • Dunlap WC, Williams DM, Chalker BE, Banaszak AT (1989) Biochemical photoadaptation in vision: U.V.-absorbing pigments in fish eye tissues. Comp Biochem Physiol B Biochem Mol Biol 93:601–607

    Article  Google Scholar 

  • Dunlap WC, Shick JM, Yamamoto Y (2000) UV protection in marine organisms I. Sunscreens, oxidative stress and antioxidants. In: Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y (eds) Free radicals in chemistry, biology, and medicine. OICA International, London, pp 200–214

  • Fabacher DL, Little EE (1995) Skin component may protect fishes from ultraviolet-B radiation. Environ Sci Pollut Res Int 2:30–32

    CAS  Google Scholar 

  • Grant PT, Middleton C, Plack PA, Thomson RH (1985) The isolation of four aminocyclohexenimines (mycosporines) and a structurally related derivative of cyclohexane-1:3-dione (gadusol) from the brine shrimp, Artemia. Comp Biochem Physiol B Biochem Mol Biol 80:755–759

    Article  Google Scholar 

  • Helbling EW, Chalker BE, Dunlap WC, Holm-Hansen O, Villafane VE (1996) Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101

    Article  Google Scholar 

  • Hobson ES (1974) Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fish Bull 72:915–1031

    Google Scholar 

  • Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. Saunders, Philadelphia

  • Jokiel PL (1980) Solar ultraviolet radiation and coral reef epifauna. Science 207:1069–1071

    Google Scholar 

  • Karentz D, Lutze LH (1990) Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol Oceanogr 35:549–561

    CAS  Google Scholar 

  • Lesser MP, Farrell JH, Walker CW (2001) Oxidative stress, DNA damage and p53 expression in the larvae of Atlantic cod (Gadus morhua) exposed to ultraviolet (290–400 nm) radiation. J Exp Biol 204:157–164

    CAS  PubMed  Google Scholar 

  • Losey GS, Nelson PA, Zamzow JP (2000) Ontogeny of spectral transmission in the eye of the tropical damselfish, Dascyllus albisella (Pomacentridae), and possible effects on UV vision. Environ Biol Fish 59:21–28

    Article  Google Scholar 

  • Lowe C, Goodman-Lowe G (1996) Suntanning in hammerhead sharks. Nature 383:677

    CAS  PubMed  Google Scholar 

  • Lyons MM, Aas P, Pakulski JD, Waasbergen L van, Miller RV, Mitchell DL, Jeffrey WH (1998) DNA damage induced by ultraviolet radiation in coral-reef microbial communities. Mar Biol 130:537–543

    Article  CAS  Google Scholar 

  • Madronich S, McKenzie RL, Bjorn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B Biol 46:5–19

    Article  CAS  Google Scholar 

  • Mason DS, Schafer F, Shick JM, Dunlap WC (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids (MAAS) are acquired from their diet by medaka fish (Oryzias latipes) but not by SKH-1 hairless mice. Comp Bioch Physiol A Mol Integr Physiol 120:587–598

    Article  CAS  Google Scholar 

  • Nelson PA, Zamzow JP, Erdmann SW, Losey GS (2003) Ontogenetic changes and environmental effects on ocular transmission in four species of coral reef fishes. J Comp Physiol [A] 189:391–399

    Google Scholar 

  • Newman SJ, Dunlap WC, Nicol S, Ritz D (2000) Antarctic krill (Euphausia superba) acquire a UV-absorbing mycosporine-like amino acid from dietary algae. J Exp Mar Biol Ecol 255:93–110

    CAS  PubMed  Google Scholar 

  • Orlov OY, Gamburtzeva AG (1976) Changeable coloration of cornea in the fish Hexagrammos octogrammus. Nature 263:405–407

    CAS  PubMed  Google Scholar 

  • Plack PA, Fraser NW, Grant PT, Middleton C, Mitchell AI, Thomson RH (1981) Gadusol, an enolic derivative of cyclohexane-1,3-dione present in the roes of cod and other marine fish. Biochem J 199:741–747

    CAS  PubMed  Google Scholar 

  • Ramos KT, Fries LT, Berkhouse CS, Fries JN (1994) Apparent sunburn of juvenile paddlefish. Prog Fish-Culturist 56:214–216

    Google Scholar 

  • Roberts RJ (1989) Miscellaneous non-infectious diseases. In: Roberts RJ (ed) Fish pathology. Balliere Tindall, London, pp 363–373

  • Ross RM, Losey GS (1983) Annual, semilunar, and diel reproductive rhythms in the Hawaiian labrid Thalassoma duperrey. Mar Biol 72:311–318

    Google Scholar 

  • Shand J, Foster RG (1999) The extraretinal photoreceptors of non-mammalian vertebrates. In: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S (eds) Adaptive mechanisms in the ecology of vision. Kluwer Academic, Dordrecht, pp 197–222

  • Shephard KL (1994) Functions for fish mucus. Rev Fish Biol Fish 4:401–429

    Google Scholar 

  • Shick JM, Lesser MP, Stochaj WR (1991) Ultraviolet radiation and photooxidative stress in zooxanthellate Anthozoa: the sea anemone Phyllodiscus semoni and the octocoral Clavularia sp. Symbiosis 10:145–173

    Google Scholar 

  • Shick JM, Lesser MP, Dunlap WC, Stochaj WR, Chalker BE, Wu Won J (1995) Depth-dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma. Mar Biol 122:41–51

    CAS  Google Scholar 

  • Shick JM, Dunlap WC, Buettner GR (2000) Ultraviolet (UV) protection in marine organisms II. Biosynthesis, accumulation, and sunscreening function of mycosporine-like amino acids. In: Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y (eds) Free radicals in chemistry, biology, and medicine. OICA International, London, pp 215–228

  • Siebeck UE, Marshall NJ (2000) Transmission of ocular media in labrid fishes. Philos Trans R Soc Lond 355:1257–1261

    CAS  Google Scholar 

  • Siebeck UE, Marshall NJ (2001) Ocular media transmission of coral reef fish—can coral reef fish see ultraviolet light? Vis Res 41:133–149

    Article  CAS  PubMed  Google Scholar 

  • Smith EJ, Partridge JC, Parsons KN, White EM, Cuthill IC, Bennett ATD, Church SC (2002) Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behav Ecol 13:11–19

    Article  Google Scholar 

  • Stimson J, Larned ST, Conklin E (2001) Effects of herbivory, nutrient levels, and introduced algae on the distribution and abundance of the invasive macroalga Dictyosphaeria cavernosa in Kaneohe Bay, Hawaii. Coral Reefs 19:343–357

    Google Scholar 

  • Stolarski R, Bojkov R, Bishop L, Zerefos C, Staehelin J, Zawodny J (1992) Measured trends in stratospheric ozone. Science 256:342–349

    CAS  Google Scholar 

  • Thorpe A, Douglas RH (1993) Spectral transmission and short-wave absorbing pigments in the fish lens—II. Effects of age. Vis Res 33:301–307

    Article  CAS  PubMed  Google Scholar 

  • Thorpe A, Douglas RH, Truscott RJW (1993) Spectral transmission and short-wave absorbing pigments in the fish lens—I. Phylogenetic distribution and identity. Vis Res 33:289–300

    Article  CAS  PubMed  Google Scholar 

  • Vetter RD, Kurtzman A, Mori T (1999) Diel cycles of DNA damage and repair in eggs and larvae of northern anchovy, Engraulis mordax, exposed to solar ultraviolet radiation. Photochem Photobiol 69:27–33

    CAS  Google Scholar 

  • Whitehead K, Karentz D, Hedges JI (2001) Mycosporine-like amino acids (MAAs) in phytoplankton, a herbivorous pteropod (Limacina helicina), and its pteropod predator (Clione antarctica) in McMurdo Bay, Antarctica. Mar Biol 139:1013–1019

    Article  CAS  Google Scholar 

  • Zagarese H, Williamson CE (2001) The implications of solar UV radiation exposure for fish and fisheries. Fish Fisheries 2:250–260

    Article  Google Scholar 

  • Zamzow JP, Losey GS (2002) Ultraviolet radiation absorbance by coral reef fish mucus: photo-protection and visual communication. Environ Biol Fish 63:41–47

    Article  Google Scholar 

  • Zigman S (1995) Environmental near-UV radiation and cataracts. Optom Vis Sci 72:899–901

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G. Losey, A. Taylor, T. Tricas, P. Nachtigall, D. Jameson, P. Nelson, and D. Copson provided valuable discussions and helpful comments that greatly improved the final manuscript. K. Del Carmen, S. Shimoda, E.G. Grau, E. Conklin, and M. Okihiro are appreciated for their help with the experimental diet formulation. P. Jokiel graciously allowed the use of his tanks. A. May, S. Christensen, and R. Bidigare facilitated the HPLC analyses. This work was funded by NSF-OCE9810387 and is contribution 1171 of the Hawaii Institute of Marine Biology. These experiments were conducted under IACUC Protocol # 95-012 and comply with the current laws of the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Zamzow.

Additional information

Communicated by P.W. Sammarco, Chauvin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamzow, J.P. Effects of diet, ultraviolet exposure, and gender on the ultraviolet absorbance of fish mucus and ocular structures. Marine Biology 144, 1057–1064 (2004). https://doi.org/10.1007/s00227-003-1286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-003-1286-2

Keywords

Navigation