Skip to main content

Cytotoxic haplosclerid sponges preferred: a field study on the diet of the dotted sea slug Peltodoris atromaculata (Doridoidea: Nudibranchia)

Abstract

Trophic specializations are widespread among opisthobranch molluscs. One purported example from the Mediterranean Sea is the dotted sea slug Peltodoris atromaculata. It has been hypothesized that this species is strongly monophagous on the sponge Petrosia ficiformis. However, the small amount of evidence that has been found for this hypothesis is based just on laboratory tests. Here we study the feeding habits and the diet of Peltodoris atromaculata in its natural habitat. We observed and videotaped 161 individuals together with the organisms on which they were found (their living substrata). Feeding scars were identified and videotaped as well. Individuals and their living substrata were sampled for further analysis in the laboratory. The composition of faeces of Peltodoris, especially undigested sponge spicules, was analyzed by light and scanning electron microscopy and compared to the composition of the living substrata. Most of the faecal samples consisted of undigested sponge spicules. Although Peltodoris was found on 11 species of sponges, only 2 of them, Petrosia spp. and Haliclona fulva, form its diet (76% out of n=121 samples). In accordance with this, feeding scars in the habitats were exclusively observed on these two sponges. Estimation of electivity indices suggests that Haliclona is preferred over Petrosia. One remarkable feature of the exclusive feeding of Peltodoris on Petrosia and Haliclona is that both sponges share specific fulvinol-like polyacetylenes that show cytotoxic activity in bioassays. Potential benefits and evolutionary aspects of this trophic specialization are discussed. Besides sponge-containing faeces, we found spicule-free faeces (24%, n= 29). These were very small in volume compared to sponge-containing faeces, and only few distinct structures were present. However, the use of food other than sponges is not necessarily indicated by this, because the spicule-free faeces might also represent left-overs from the stomach and digestive gland after sponge spicules have been released.

This is a preview of subscription content, access via your institution.

Fig. 1A, B
Fig. 2A–E
Fig. 3
Fig. 4A–L
Fig. 5A–D

References

  1. Avila C (1992) A preliminary catalogue of natural substances of opisthobranch molluscs from western Mediterranean and near Atlantic. Sci Mar 56: 373–382

    Google Scholar 

  2. Avila C (1996) The growth of Peltodoris atromaculata Bergh, 1880 (Gastropoda: Nudibranchia) in the laboratory. J Moll Stud 62:151–157

    Google Scholar 

  3. Avila C, Durfort M (1996) Histology of epithelia and mantle glands of selected species of Doridacean molluscs with chemical defensive strategies. Veliger 39:148–163

    Google Scholar 

  4. Avila C, Iken K, Fontana A, Cimino G (2000) Chemical ecology of the Antarctic nudibranch Bathydoris hodgsoni Eliot, 1907: defensive role and origin of its natural products. J Exp Mar Biol Ecol 252:27–44

    CAS  PubMed  Google Scholar 

  5. Ayling AL (1983) Growth and regeneration in thinly encrusting Demospongiae from temperate waters. Biol Bull 165:343–352

    Google Scholar 

  6. Barbour MA (1979) A note on the distribution and food preference of Cadlina laevis (Nudibranchia: Chromodorididae). Nautilus 93:2–3

    Google Scholar 

  7. Bavestrello G, Sarà M (1992) Morphological and genetic differences in ecologically distinct populations of Petrosia (Porifera, Demospongiae). Biol J Linn Soc 47:49–60

    Google Scholar 

  8. Bavestrello G, Sarà M (1993) Influence of depth on size of sponge spicules. Sci Mar 57:415–420

    Google Scholar 

  9. Bloom SA (1981) Specialization and non-competitive resource partitioning among sponge-eating dorid nudibranchs. Oecologia 49:305–315

    Google Scholar 

  10. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2003) Marine natural products (Royal Society of Chemistry). Nat Prod Rep 20:1–48

    Article  CAS  PubMed  Google Scholar 

  11. Carefoot TH (1967) Growth and nutrition of three species of opisthobranch molluscs. Comp Biochem Physiol 21:627–652

    CAS  PubMed  Google Scholar 

  12. Castiello D, Cimino G, de Rosa S, de Stefano S, Izzo G, Sodano G (1979) Studies on the chemistry of the relationship between the opisthobranch Peltodoris atromaculata and the sponge Petrosia ficiformis. In: Levi C, Boury-Esnault N (eds) Biologie des Spongaires. C.N.R.S., Paris, pp 413–416

  13. Cattaneo-Vietti R, Angelini S, Bavestrello G (1993) Skin and gut spicules in Discodoris atromaculata (Bergh, 1880) Boll Malacol 29:173–180

    Google Scholar 

  14. Cattaneo-Vietti R, Schiaparelli S, Chiantore M (2001) Food availability and trophic needs of Peltodoris atromaculata (Mollusca: Doridacea) Boll Malacol 37:77–80

    Google Scholar 

  15. Cimino G, Ghiselin MT (1999) Chemical defence and evolutionary trends in biosynthetic capacity among dorid nudibranchs. Chemoecology 9:187–207

    CAS  Google Scholar 

  16. Cimino G, de Stefano S (1977) New acetylenic compounds from the sponge Reniera fulva. Tetrahedron Lett 1977:1325–1328

    Article  Google Scholar 

  17. Cimino G, Crispino A, de Rosa S, de Stefano S, Sodano G (1980) Polyacetylenes from the sponge Petrosia ficiformis found in dark caves. Experentia 37:924–926

    Google Scholar 

  18. Cimino G, de Rosa S, de Stefano S, Sodano G (1982) The chemical defence of four Mediterranean nudibranchs. Comp Biochem Physiol 73B:471–474

    CAS  Google Scholar 

  19. Cimino G, de Rosa S, de Stefano S, Sodano G, Villani G (1983) Dorid nudibranch elaborates its own chemical defence. Science 219:1237–1238

    CAS  Google Scholar 

  20. Cimino G, de Giulio A, de Rosa S, de Stefano S, Sodano G (1985) Further high molecular weight polyacetylenes from the sponge Petrosia ficiformis. J Nat Prod 48:22–27

    CAS  Google Scholar 

  21. Cimino G, de Giulio A, de Rosa S, di Marzo V (1989) High molecular weight polyacetylenes from Petrosia ficiformis: further structural analysis and biological activity. Tetrahedron Lett 1989:3563–3566

    Article  Google Scholar 

  22. Cimino G, de Giulio A, de Rosa S, di Marzo V (1990) Minor bioactive polyacetylenes from Petrosia ficiformis. J Nat Prod 53:345–353

    CAS  Google Scholar 

  23. Cimino G, Fontana A, Gavignin M (1999) Marine opisthobranch molluscs: chemistry and ecology in saccoglossans and dorids. Curr Org Chem 3:327

    CAS  Google Scholar 

  24. Duckworth AR (2003) Effect of wound size on the growth and regeneration of two subtidal sponges. J Exp Mar Biol Ecol 287:139–153

    Article  Google Scholar 

  25. Durán R, Garrido L, Ortega MJ, Rueda A, Salvá J, Zubía E (1999) Bioactive natural compounds of algae and invertebrates from the littoral of Cadiz. Bol Inst Esp Oceanogr 15:357–361

    Google Scholar 

  26. Dyrynda PEJ, Dyrynda EA (1995) Sponges. In: Hayward PJ, Ryland JS (eds) Handbook of the marine fauna of north-west Europe. Oxford University Press, pp 35–61

  27. Elvin DW (1976) Feeding of a dorid nudibranch, Diaulula sandiegensis, on the sponge Haliclona permollis. Veliger 19:194–198

    Google Scholar 

  28. Faulkner DJ (1998) Marine natural products (Royal Society of Chemistry). Nat Prod Rep 15:113–158

    CAS  PubMed  Google Scholar 

  29. Faulkner DJ (1999) Marine natural products (Royal Society of Chemistry). Nat Prod Rep 16:155–198

    Article  Google Scholar 

  30. Faulkner DJ (2000) Marine natural products (Royal Society of Chemistry). Nat Prod Rep 17:7– 55

    CAS  PubMed  Google Scholar 

  31. Faulkner DJ (2001) Marine natural products (Royal Society of Chemistry). Nat Prod Rep 18:1– 49

    Article  CAS  PubMed  Google Scholar 

  32. Faulkner DJ (2002) Marine natural products (Royal Society of Chemistry). Nat Prod Rep 19:1– 48

    CAS  PubMed  Google Scholar 

  33. Gili JM, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol 13:316–324

    Article  Google Scholar 

  34. Griessinger JM (1971) Études des Réniérides de Méditerranée (Démosponges, Haplosclérides). Bull Mus Nat Hist Nat Zool 3:97–182

    Google Scholar 

  35. Guo Y, Gavagnin M, Trivellone E, Cimino G (1994) Absolute stereochemistry of petroformynes, high molecular weight polyacetylenes from the marine sponge Petrosia ficiformis. Tetrahedron 50:13261–13268

    Article  CAS  Google Scholar 

  36. Guo Y, Gavagnin M, Salierno C, Cimino G (1998) Further petroformynes from both Atlantic and Mediterranean populations of the sponge Petrosia ficiformis. J Nat Prod 61:333–337

    Article  CAS  PubMed  Google Scholar 

  37. Haefelfinger HR (1961) Beiträge zur Kenntnis von Peltodoris atromaculata Bergh, 1880. Rev Suisse Zool 68:331–343

    Google Scholar 

  38. Hellou J, Andersen RJ, Thompson JE (1982) Terpenoids from the dorid nudibranch Cadlina luteomarginata. Tetrahedron 38:1875–1879

    Article  CAS  Google Scholar 

  39. Iken K, Avila C, Fontana A, Gavagnin M (2002) Chemical ecology and origin of defensive compounds in the Antarctic nudibranch Austrodoris kerguelenensis (Opisthobranchia: Gastropoda). Mar Biol 141:101–109

    Article  Google Scholar 

  40. Jensen KR (1997) Evolution of the Saccoglossa (Mollusca, Opisthobranchia) and their ecological associations with their food plants. Evol Ecol 11:301–335

    Article  Google Scholar 

  41. Krebs CJ (1989) Ecological methodology. Harper Collins

  42. McFarland FK, Muller-Parker G (1993) Photosynthesis and retention of zooxanthellae and zoochlorellae within aeolid nudibranch Aeolidia papillosa. Biol Bull 184:223–229

    Google Scholar 

  43. Megina C, Carballo JL, Cervera JL, García-Gómez JC (2002) The diet of Platydoris argo (Gastropoda: Nudibranchia) and the dietary specialization of sponge eating dorids. J Moll Stud 68:173–179

    Article  Google Scholar 

  44. Ortega MJ, Zubía E, Carballo JL, Salvá J (1996) Fulvinol, a new long-chain diacetylenic metabolite from the sponge Reniera fulva. J Nat Prod 59:1069–1071

    Article  CAS  Google Scholar 

  45. Pearre S (1982) Estimating prey preference by predators: uses of various indices, and a proposal of another based on χ 2. Can J Fish Aquat Sci 39:914–923

    Google Scholar 

  46. Pulitzer-Finali GA (1983) A collection of Mediterranean Demospongiae (Porifera) with, in appendix, a list of Demospongiae hitherto recorded from the Mediterranean Sea. Ann Mus Civ Stor Nat Genova 84:445–621

    Google Scholar 

  47. Raven JA, Walker DI, Jensen KR, Handley LL, Scrimgeour CM, McInroy SG (2001) What fraction of the organic carbon in sacoglossans is obtained from photosynthesis by kleptoplastids? An investigation using the natural abundance of stable carbon isotopes. Mar Biol 138:537–545

    Article  CAS  Google Scholar 

  48. Regoli F, Cerrano C, Chierici E, Bompadre S (2000) Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia ficiformis: role of endosymbionts and solar irradiance. Mar Biol 137:453–461

    Article  CAS  Google Scholar 

  49. Riedl R (1966) Biologie der Meereshöhlen. Parey, Hamburg

  50. Ros JD (1976) Sistemas de defensa en los opistobranquios. Oecol Aquat 2:41–77

    Google Scholar 

  51. Ros JD (1978) La alimentación y el sustrato en los opistobranquios ibéricos. Oecol Aquat 3:153–166

    Google Scholar 

  52. Ros JD, Romero J, Ballesteros E, Gili JM (1985) Diving in blue water. The benthos. In: Margalef R (ed) Western Mediterranean. Pergamon, pp 233–295

  53. Schmekel L, Portmann A (1982) Opisthobranchia des Mittelmeeres. Springer, Berlin Heidelberg New York

  54. Sheild CJ, Whitman JD (1993) The impact of Henricia sanguinolenta (O.F. Müller) (Echinodermata: Asteroidea) predation on the finger sponges, Isodictya spp. J Exp Mar Biol Ecol 166:107–133

    Article  Google Scholar 

  55. True AM (1970) Ètude quantitative de quatre peuplements sciaphiles sur substrat rocheux dans la région marseillaise. Bull Inst Océanogr Monaco 69:1–64

    Google Scholar 

  56. Tsukamoto S, Kato H, Hirota H, Fusetani N (1997) Seven new polyacetylene derivatives, showing both potent metamorphosis-inducing activity in ascidian larvae and antifouling activity against barnacle larvae, from the marine sponge Callyspongia truncata. J Nat Prod 60:126–130

    Article  CAS  Google Scholar 

  57. Turner JT (1987) Zooplankton feeding ecology: contents of fecal pellets of the copepod Centropages velificatus from waters near the mouth of the Mississippi. Biol Bull 173:377–386

    Google Scholar 

  58. Wägele H (1989) Diet of some Antarctic nudibranchs. Mar Biol 100:439–441

    Google Scholar 

  59. Weerdt WH de (1986) A systematic revision of the north- eastern Atlantic shallow- water Haplosclerida (Porifera, Demospongiae), part II. Chalinidae. Beaufortia 36:81–165

    Google Scholar 

  60. Weerdt WH de (1989) Phylogeny and vicariance biogeography of North Atlantic Chalinidae (Haplosclerida, Demospongiae) Beaufortia 39:55–88

  61. Weerdt WH de (2000) A monograph of the shallow- water Chalinidae (Porifera, Haplosclerida) of the Caribbean. Beaufortia 50:1–70

    Google Scholar 

Download references

Acknowledgements

Fieldwork was greatly supported by Unisub L’Estartit (Anthony Murray Sen., Anthony Murray Jr., Sean Murray, Guido, Manolo, Willie, and Paco), HYDRA-Institut für Meereswissenschaften, Isola d’ Elba (Christian Lott, Andreas Spohr, and Ilka Friedrich), Institut für Marine Biologie Giglio (Claus Valentin, Reiner Krumbach, and Willy Klose), and Christiane and Konrad Schermutzki. Helmut Lehnert kindly confirmed our determination of sponges from macerated faeces. Wally de Weerdt (Amsterdam), Helmut Lehnert (Ottmarshausen), Conxita Avila (Blanes), Guido Cimino (Napoli), Cesar Megina (Cadiz), Christine Salomon (Minnesota), Mirco Solé (Tübingen), and Heike Wägele (Bochum) provided relevant literature. We thank three anonymous reviewers for inspiring comments and Marcelo Sánchez-Villagra for proof reading. S.G. and F.S. were funded by the University of Tuebingen (SF III-H3-1423/TG 98/2000). All experiments comply with the current laws of the countries in which they were performed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sven Gemballa.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gemballa, S., Schermutzki, F. Cytotoxic haplosclerid sponges preferred: a field study on the diet of the dotted sea slug Peltodoris atromaculata (Doridoidea: Nudibranchia). Marine Biology 144, 1213–1222 (2004). https://doi.org/10.1007/s00227-003-1279-1

Download citation

Keywords

  • Sponge
  • Digestive Gland
  • Faecal Pellet
  • Polyacetylenes
  • Sponge Spicule