Skip to main content
Log in

Seasonal changes in nucleic acids, amino acids and protein content in juvenile Norway lobster (Nephrops norvegicus)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The objective of this study was to describe the seasonal variations in nucleic acid contents and amino acid profiles in the muscle of juvenile Nephrops norvegicus. RNA and protein contents, and RNA:protein and RNA:DNA ratios varied significantly between seasons, being highest in spring and lowest in autumn/winter (P<0.05). Though DNA content increased significantly from autumn to summer (P<0.05), protein:DNA ratio did not show significant seasonal variations (P≥0.05). In respect to protein-bound amino acid content (BAA), a significant increase was observed from winter to summer (P<0.05). Both essential (EAA) and non-essential amino acids (NEAA) increased significantly (27.6% and 27.8%, respectively; P<0.05), mainly due to the considerable increase in arginine and proline (59.1% and 225.2%, respectively; P<0.05). A significant decrease was observed in the free amino acid content (FAA) from winter to summer (P<0.05); and a higher percentage decrease occurred in free non-essential (FNEAA; 27.9%) in comparison to free essential amino acids (FEAA; 21.8%). The significant increase in RNA and BAA contents from winter to spring may be related to protein synthesis. On the other hand, the lowest values obtained in winter may be due to a reduction in feeding activity; in this period the muscle protein must be progressively hydrolysed, which is evident with the higher FAA content. The liberated amino acids enter the FAA pool and become available for energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Aiken DE (1980) Molting and growth. In: Cobbs JS, Phillips BF (eds) The biology and management of lobsters, vol 1. Academic Press, New York, pp 2–72

  • Ambar I, Howe MR (1979) Observations of the Mediterranean outflow I. Mixing in the Mediterranean outflow. Deep-Sea Res 26A:535–554

    Google Scholar 

  • Anger K, Hirche H-J (1990) Nucleic acids and growth of larval and early juvenile spider crab, Hyas araneus. Mar Biol 105:403–411

    CAS  Google Scholar 

  • Baden SP, Depledge MH, Hagerman L (1994) Glycogen depletion and altered copper and manganese handling in Nephrops norvegicus following starvation and exposure to hypoxia. Mar Ecol Prog Ser 103:65–72

    CAS  Google Scholar 

  • Barclay MC, Dall W, Smith DM (1983) Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn, Penaeus esculentus Haswell. J Exp Mar Biol Ecol 68:229–244

    CAS  Google Scholar 

  • Beis ID, Newsholme EA (1975) The contents of adenine nucleotides, phosphagen and some glycolytic intermediates in resting muscle from vertebrates and invertebrates. Biochem J 152:23–32

    CAS  PubMed  Google Scholar 

  • Buckley LJ (1984) RNA-DNA ratio: an index of larval fish growth in the sea. Mar Biol 80:291–298

    CAS  Google Scholar 

  • Buckley L, Caldarone E, Ong T-L (1999) RNA-DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia 401:265–277

    CAS  Google Scholar 

  • Cartes JE (1993) Diets of deep-water pandalid shrimps on the Western Mediterranean slope. Mar Ecol Prog Ser 96:49–61

    Google Scholar 

  • Cartes JE, Abelló P (1992) Comparative feeding habits of polychelid lobsters in the Western Mediterranean deep-sea communities. Mar Ecol Prog Ser 84:139–150

    Google Scholar 

  • Chapman CJ, Howard FG (1988) Environmental influences on Norway lobster populations and their implications for fishery management. In: Fincham AA, Rainbow PS (eds) Aspects of decapod crustacean biology. Oxford University Press, Oxford, pp 343–353

  • Chícharo MA, Chícharo L, Valdés L, López-Jamar E, Ré P (1998) Estimation of starvation and diel variation of the RNA/DNA ratios in field-caught Sardina pilchardus larvae off the north of Spain. Mar Ecol Prog Ser 164:273–283

    Google Scholar 

  • Clarke A, Rodhouse PG, Holmes LJ, Pascoe PL (1989) Growth rate and nucleic acid ratio in cultured cuttlefish Sepia officinalis (Mollusca: Cephalopoda). J Exp Mar Biol Ecol 133:229–240

    Google Scholar 

  • Claybrook DL (1983) Nitrogen metabolism. In: Mantel LH (ed) The biology of Crustacea, vol 5. Internal anatomy and physiological regulation. Academic Press, New York, pp 163–213

  • Company JB, Sardà F (2000) Growth parameters of deep-water decapod crustaceans in the northwest Mediterranean Sea: a comparative approach. Mar Biol 136:79–90

    Article  Google Scholar 

  • Cristo M, Cartes JE (1998) A comparative study of the feeding ecology of Nephrops norvegicus (L.), (Decapoda: Nephropidae) in the bathyal Mediterranean and the adjacent Atlantic. Sci Mar (Bar) 62:81–90

    Google Scholar 

  • Dall W (1974) Indices of nutritional state in the western rock lobster, Panulirus longipes (Milne Edwards). I. Blood and tissue constituents and water content. J Exp Mar Biol Ecol 16:167–180

    CAS  Google Scholar 

  • Dall W (1981) Lipid absorption and utilization in the Norwegian lobster, Nephrops norvegicus (L.). J Exp Mar Biol Ecol 50:33–45

    Google Scholar 

  • Dall W, Smith DM (1986) Oxygen consumption and ammonia-N excretion in fed and starved tiger prawns, Penaeus esculentus. Aquaculture 55:23–33

    CAS  Google Scholar 

  • Dall W, Smith DM (1987) Changes in protein-bound and free amino acids in the muscle of the tiger prawn Penaeus esculentus during starvation. Mar Biol 95:509–520

    CAS  Google Scholar 

  • Dutil J-D, Lambert Y, Guderley H, Blier PU, Pelletier D, Desroches M (1998) Nucleic acids and enzymes in Atlantic cod (Gadus morhua) differing in condition and growth rate trajectories. Can J Fish Aquat Sci 55:788–795

    Article  CAS  Google Scholar 

  • Edsman L, Jarvi T, Niejahr B (1994) The RNA concentration as an index of current growth rate in juvenile signal crayfish, Pacifastacus leniusculus. Nordic J Freshw Res 69:149–152

    Google Scholar 

  • FAO (2000) FAO yearbook. Fishery statistics. Capture production 2000, vol 90/1

  • Farmer ASD (1974) Reproduction in Nephrops norvegicus (Decapoda: Nephropidae). J Zool 174:161–183

    Google Scholar 

  • Ferguson M, Danzmann RG (1990) RNA/DNA ratios in white muscle as estimates of growth in rainbow trout held at different temperatures. Can J Zool 68:1494–1498

    CAS  Google Scholar 

  • Fiúza AFG, Hamann M, Ambar I, Del Rio GD, González N, Cabanas JM (1998) Water masses and their circulation off western Iberia during May 1993. Deep-Sea Res I 45:1127–1160

    Google Scholar 

  • Foster AR, Houlihan DF, Hall SJ, Burren LJ (1992) The effects of temperature acclimation on protein synthesis rates and nucleic acid content of juvenile cod (Gadus morhua L.). Can J Zool 70:2095–2102

    CAS  Google Scholar 

  • Freeman JA, West TL, Costlow JD (1983) Postlarval growth in juveniles Rhithropanopeus harrisii. Biol Bull 165:409–415

    Google Scholar 

  • Gäde D (1988) Energy metabolism during anoxia and recovery in shell adductor and foot muscle of the gastropod mollusc Haliotis lamellose: formation of the novel anaerobic and product taurine. Biol Bull 175:122–131

    Google Scholar 

  • Gäde D, Grieshaber MK (1986) Pyruvate reductases catalyze the formation of lactate and opines in anaerobic invertebrates. Comp Biochem Physiol 83B:255–272

    Google Scholar 

  • Gras J, Gudefin Y, Chagny F (1978) Free amino acids and ninhydrin—positive substances in fish. I. Muscle and skin of rainbow trout (Salmo gairdnerii Richardson). Comp Biochem Physiol 60B:369–372

    CAS  Google Scholar 

  • Gunasekera R, De Silva S, Ingram BA (1999) The amino acid profiles in developing eggs and larvae of the freshwater Percichthyid fishes, trout cod, Maccullochella macquariensis and Murray cod, Maccullochella peelii peelii. Aquat Living Res 12:255–261

  • Hartnoll RG (1983) Growth. In: Bliss DE (ed) The biology of Crustacea, vol 8. Academic Press, New York, pp 214–282

  • Hird FJR, Cianciosi SC, McLean RM (1986) Investigations on the origin and metabolism of the carbon skeleton of ornithine, arginine and proline in selected animals. Comp Biochem Physiol 83B:179–184

    CAS  Google Scholar 

  • Hochachka PW, Fields JHA (1982) Arginine, glutamate and proline as substrates for oxidation and for glycogenesis in cephalopod tissues. Pac Sci 36:325–335

    CAS  Google Scholar 

  • Hochachka PW, Mommsen TP, Storey J, Storey KB, Johansen K, French CJ (1983) The relationship between arginine and proline metabolism in cephalopods. Mar Biol 4:1-21

    CAS  Google Scholar 

  • Houlihan DF, Mathers EM, Foster A (1993) Biochemical correlates of growth rate in fish. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, London, pp 45–71

  • Houlihan DF, Kelly K, Boyle PR (1998) Correlates of growth and feeding in laboratory maintained Eledone cirrhosa (Cephalopoda: Octopoda). J Mar Biol Assoc UK 78:919–932

    Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  PubMed  Google Scholar 

  • Juinio MAR, Cobb JS, Bengston D, Johnson M (1992) Changes in nucleic acids over the moult cycle in relation to food availability and temperature in Homarus americanus postlarvae. Mar Biol 114:1-14

    CAS  Google Scholar 

  • Katzen S, Salser BR, Ure J (1984) Dietary lysine effects on stress-related mortality of the marine shrimp, Penaeus stylirostris. Aquaculture 40:277–281

    CAS  Google Scholar 

  • Kimura S, Tanaka H (1986) Partial characterization of muscle collagens from prawns and lobster. J Food Sci 51:330–332

    CAS  Google Scholar 

  • Koumans JTM, Akster HA, Booms GHR, Osse JWN (1993) Growth of carp (Cyprinus carpio L.) white axial muscle: hyperplasia and hypertrophy in relation to the myonucleus/sarcoplasm ratio and the occurrence of different subclasses of myogenic cells. J Fish Biol 43:69–80

    Article  Google Scholar 

  • Labropoulou M, Kostikas I (1999) Patterns of resource use in deep-water decapods. Mar Ecol Prog Ser 184:171–182

    Google Scholar 

  • Li HW, Brockesen RW (1977) Approaches to the analysis of the energetic costs of interspecific competition for space by rainbow trout (Salmo gairdneri). J Fish Biol 11:329–341

    Google Scholar 

  • Litaay M, De Silva SS, Gunasekera RM (2001) Changes in the amino acid profiles during embryonic development of the blacklip abalone (Haliotis rubra). Aquat Living Resour 14:335–342

    Article  Google Scholar 

  • Lowry OH, Rosenburgh NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mayrand E, Guderley H, Dutil J-D (2000a) Biochemical indicators of muscle growth in the snow crab Chionoecetes opilio (O.Fabricius). J Exp Mar Biol Ecol 255:37–49

    Article  CAS  PubMed  Google Scholar 

  • Mayrand E, Dutil J-D, Guderley H (2000b) Changes in muscle of postmoult snow crabs Chionoecetes opilio (O.Fabricius) fed different rations. J Exp Mar Biol Ecol 243:95–113

    Article  CAS  Google Scholar 

  • McCoid V, Miget R, Finne G (1984) Effect of environmental salinity on the free amino acid composition and concentration in penaeid shrimp. J Food Sci 49:327–330

    CAS  Google Scholar 

  • Mejbaum W (1939) Über die Bestimmung kleiner Pentosemengen, insbesondere in derivaten der Adenylsäure. Z Phys Chem 258:117–120

    CAS  Google Scholar 

  • Mori M, Modena M, Biagi F (2001) Fecundity and egg volume in Norway lobster (Nephrops norvegicus) from different depths in the northern Tyrrhenian Sea. Sci Mar 65:111–116

    Google Scholar 

  • Moss SM (1994a) Growth rates, nucleic acid concentrations, and RNA/DNA ratios of juvenile white shrimp, Penaeus vannamei Boone, fed different algal diets. J Exp Mar Biol Ecol 182:193–204

    Google Scholar 

  • Moss SM (1994b) Use of nucleic acids as indicators of growth in juvenile white shrimp, Penaeus vannamei. Mar Biol 120:359–367

    CAS  Google Scholar 

  • Mytilineou C, Sardà F (1995) Age and growth of Nephrops norvegicus in the Catalan Sea, using length-frequency analysis. Fish Res 23:283–299

    Article  Google Scholar 

  • Orton JH (1920) Sea temperature, breeding and distribution in marine animals. J Mar Biol Assoc UK 12:339–366

    Google Scholar 

  • Parslow-Williams PJ, Atkinson RJA, Taylor AC (2001) Nucleic acids as indicators of nutritional condition in the Norway lobster Nephrops norvegicus. Mar Ecol Prog Ser 211:235–243

    CAS  Google Scholar 

  • Passano LM (1960) Molting and its control. In: Waterman TH (ed) The physiology of Crustacea. Metabolism and growth, vol I. Academic Press, New York, pp 473–536

  • Pierce GJ, Key LN, Boyle PR, Siegert KJ, Gonçalves JM, Porteiro FM, Martins HR (1999) RNA concentration and the RNA to protein ratio in cephalopod tissues: sources of variation and relationship with growth rate. J Exp Mar Biol Ecol 237:185–201

    Article  CAS  Google Scholar 

  • Rosa R, Nunes ML (2002) Biochemical changes during the reproductive cycle of deep-sea decapod Nephrops norvegicus in the Portuguese south coast. Mar Biol 141:1001–1009

    Article  CAS  Google Scholar 

  • Sardà F (1998) Nephrops norvegicus (L.): comparative biology and fishery in the Mediterranean Sea. Introduction, conclusions and recommendations. Sci Mar 62:5-15

    Google Scholar 

  • Speck U, Urich K (1969) Consumption of body constituents during starvation in the crayfish, Orconectes limosus. Z Vgl Physiol 63: 410–414

    CAS  Google Scholar 

  • Taylor AC, Field RH, Parslow-Williams PJ (1996) The effects of Hematodinium sp. infection on aspects of the respiratory physiology of the Norway lobster, Nephrops norvegicus (L.). J Exp Mar Biol Ecol 207:217–228

    Article  Google Scholar 

  • Torres C (1973) Variations du pool des acides aminés libres du muscle abdominal de Penaeus kerathurus au cours du cycle d'intermue, et au cours du jeûne. Comp Biochem Physiol 45B:1–12

    Google Scholar 

  • Tuck ID, Chapman CJ, Atkinson RJA (1997) Population biology of the Norway lobster, Nephrops norvegicus (L.) in the Firth of Clyde, Scotland. I. Growth and density. ICES J Mar Sci 54:125–135

    Article  Google Scholar 

  • Tyler PA (1988) Seasonality in the deep-sea. Oceanogr Mar Biol Annu Rev 26:227–258

    Google Scholar 

  • Van Wormhoudt A, Porcheron P, Le Roux A (1985) Ecdysitéroïds et synthèse protéique dans l'hépatopancréas de Palaemon serratus (Crustacea Decapoda) au cours du cycle d'intermue. Bull Soc Zool Fr 110:191–204

    Google Scholar 

  • Wilder IB, Stanley JG (1983) RNA-DNA ratios as an index to growth in salmonid fishes in the laboratory and in streams contaminated by carbaryl. J Fish Biol 22:165–172

    CAS  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, Upper Saddle River, N.J., USA

Download references

Acknowledgements

The Foundation for Science and Technology of Portugal (FCT) supported this study through a doctoral grant to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rosa.

Additional information

Communicated by S.A. Poulet, Roscoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, R., Nunes, M.L. Seasonal changes in nucleic acids, amino acids and protein content in juvenile Norway lobster (Nephrops norvegicus). Marine Biology 143, 565–572 (2003). https://doi.org/10.1007/s00227-003-1096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-003-1096-6

Keywords

Navigation