Skip to main content
Log in

Copper and zinc handling during the moult cycle of male and female shore crabs Carcinus maenas

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Tissue concentrations and contents of copper and zinc were determined at 11 different stages of the moult cycle in male and female shore crabs Carcinus maenas. Metal concentrations in haemolymph, gills, midgut gland, muscle, and exoskeleton of males and haemolymph, gills, and midgut gland of females were determined, as were haemocyanin concentrations and haemolymph volumes (using 14C-inulin) in males. The changes in tissue Cu and Zn concentrations and contents that occur throughout the moult cycle can be attributed to muscle breakdown in late premoult, the period of starvation in late premoult and early postmoult, the resorption from and shedding of the old exoskeleton, and the dilution of the haemolymph caused by water uptake around the time of ecdysis. The present study demonstrates that whole-body Cu and Zn contents remain constant during a large part of the moult cycle of male and female C. maenas. This state of whole-body trace metal homeostasis is maintained in spite of major changes in tissue proportions and tissue Cu and Zn concentrations and contents. Previous studies have not carried out the necessary analysis to move from theoretical estimates to quantitative determination of the changes in tissue metal distribution associated with moulting in crustaceans; the data presented illustrate the necessity of measuring both tissue concentrations and contents of metals to avoid misinterpretation of either.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f.
Fig. 2a–f.
Fig. 3a–f.
Fig. 4a–f.
Fig. 5a–f.

Similar content being viewed by others

References

  • Adams E, Simkiss K, Taylor M (1982) Metal ion metabolism in the moulting crayfish (Austropotamobius pallipes). Comp Biochem Physiol A 72:73–76

    Google Scholar 

  • Aiken DE (1973) Proecdysis, setal development, and molt prediction in the American lobster (Homarus americanus). J Fish Res Board Can 30:1337–1344

    Google Scholar 

  • Binns R (1969) The physiology of the antennal gland of Carcinus maenas (L.) II. Urine production rates. J Exp Biol 51:11–16

    Google Scholar 

  • Bjerregaard P (1988) Effect of selenium on cadmium uptake in selected benthic invertebrates. Mar Ecol Prog Ser 48:17–28

    CAS  Google Scholar 

  • Bjerregaard P (1990) Influence of physiological condition on cadmium transport from haemolymph to hepatopancreas in Carcinus maenas. Mar Biol 106:199–209

    CAS  Google Scholar 

  • Bjerregaard P (1991) Relationship between physiological condition and cadmium accumulation in Carcinus maenas (L.). Comp Biochem Physiol A 99:75–83

    Google Scholar 

  • Bjerregaard P, Depledge MH (1994) Cadmium accumulation in Littorina littorea, Mytilus edulis and Carcinus maenas: the influence of salinity and calcium ion concentrations. Mar Biol 119:385–395

    CAS  Google Scholar 

  • Bjerregaard P, Depledge MH (2002) Trace metal concentrations and contents in the tissues of the shore crab Carcinus maenas: effects of size and tissue hydration. Mar Biol 141:741–752

    CAS  Google Scholar 

  • Bjerregaard P, Vislie T (1986) Effect of copper on ion- and osmoregulation in the shore crab Carcinus maenas. Mar Biol 91:69–76

    CAS  Google Scholar 

  • Bondgaard M, Nørum U, Bjerregaard P (2000) Cadmium accumulation in the female shore crab Carcinus maenas during the moult cycle and ovarian maturation. Mar Biol 137:995–1004

    CAS  Google Scholar 

  • Brouwer M, Syring R, Hoexum Brouwer T (2002) Role of a copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin. J Inorg Biochem 88:228–239

    Article  CAS  PubMed  Google Scholar 

  • Bryan GW (1966) The metabolism of Zn and 65Zn in crabs, lobsters and fresh-water crayfish. In: Åberg B, Hungate FP (eds) Proceedings of the international symposium on radioecology. Pergamon Press, New York, pp 1005–1016

  • Bryan GW (1968) Concentrations of zinc and copper in the tissues of decapod crustaceans. J Mar Biol Assoc UK 48:303–321

    CAS  Google Scholar 

  • Busselen P (1970) Effects of moulting cycle and nutritional conditions on haemolymph proteins in Carcinus maenas. Comp Biochem Physiol 37:73–83

    CAS  Google Scholar 

  • Cameron JN (1989) Post-moult calcification in the blue crab, Callinectes sapidus: timing and mechanism. J Exp Biol 143:285–304

    CAS  Google Scholar 

  • Chan HM, Rainbow PS (1993) On the excretion of zinc by the shore crab Carcinus maenas (L.). Ophelia 38:31–45

    Google Scholar 

  • Chan HM, Bjerregaard P, Rainbow PS, Depledge MH (1992) Uptake of zinc and cadmium by two populations of shore crabs Carcinus maenas at different salinities. Mar Ecol Prog Ser 86:91–97

    CAS  Google Scholar 

  • Depledge MH (1989) Studies on copper and iron concentrations, distributions and uptake in the brachyuran Carcinus maenas (L.) following starvation. Ophelia 30:187–197

    Google Scholar 

  • Depledge MH, Bjerregaard P (1989a) Haemolymph protein composition and copper levels in decapod crustaceans. Helgol Meeresunters 43:207–223

    Google Scholar 

  • Depledge MH, Bjerregaard P (1989b) Explaining individual variation in trace metal concentrations in selected marine invertebrates: the importance of interactions between physiological state and environmental factors. In: Aldrich JC (ed) Phenotypic responses and individuality in aquatic ectotherms. JAPAGA, Dublin, pp 121–126

  • Djangmah JS (1970) The effects of feeding and starvation on copper in the blood and hepatopancreas, and on blood proteins of Crangon vulgaris (Fabricius). Comp Biochem Physiol 32:709–731

    CAS  Google Scholar 

  • Djangmah JS, Grove DJ (1970) Blood and hepatopancreas copper in Crangon vulgaris (Fabricius). Comp Biochem Physiol 32:733–745

    CAS  Google Scholar 

  • Drach P (1939) Mue et cycle d'intermue chez les Crustacés Décapodes. Ann Inst Océanogr Paris 19:103–391

    Google Scholar 

  • Drach P, Tchernigovtzeff C (1967) Sur la méthode de détermination des stades d'intermue et son application générale aux crustacés. Vie Milieu A Biol Mar 18:595–610

    Google Scholar 

  • Engel DW (1987) Metal regulation and molting in the blue crab, Callinectes sapidus: copper, zinc, and metallothionein. Biol Bull 172:69–82

    CAS  Google Scholar 

  • Engel DW, Brouwer M (1987) Metal regulation and molting in the blue crab, Callinectes sapidus: metallothionein function in metal metabolism. Biol Bull 173:239–251

    Google Scholar 

  • Engel DW, Brouwer M (1991) Short-term metallothionein and copper changes in blue crabs at ecdysis. Biol Bull 180:447–452

    CAS  Google Scholar 

  • Engel DW, Brouwer M (1993) Crustaceans as models for metal metabolism I. Effects of the molt cycle on blue crab metal metabolism and metallothionein. Mar Environ Res 35:1–5

    CAS  Google Scholar 

  • Engel DW, Brouwer M, Mercaldo-Allen R (2001) Effects of molting and environmental factors on trace metal body-burdens and hemocyanin concentrations in the American lobster, Homarus americanus. Mar Environ Res 52:257–269

    Article  CAS  PubMed  Google Scholar 

  • Francesconi K, Soames C, Jackson M (1995) Remarkable sex related differences in the cadmium concentrations of the coral prawn Metapenaeopsis crassissima. Bull Mar Sci 56:337–339

    Google Scholar 

  • Francesconi KA, Pedersen KL, Højrup P (1998) Sex-specific accumulation of Cd-metallothionein in the abdominal muscle of the coral prawn Metapenaeopsis crassissima from a natural population. Mar Environ Res 46:541–544

    Article  CAS  Google Scholar 

  • Gleeson RA, Zubkoff PL (1977) The determination of hemolymph volume in the blue crab, Callinectes sapidus, utilizing 14C-thiocyanate. Comp Biochem Physiol A 56:411–413

    Google Scholar 

  • Glynn JP (1968) Studies on the ionic, protein and phosphate changes associated with the moult cycle of Homarus vulgaris. Comp Biochem Physiol 26:937–946

    CAS  Google Scholar 

  • Hagerman L (1983) Haemocyanin concentration of juvenile lobsters (Homarus gammarus) in relation to moulting cycle and feeding conditions. Mar Biol 77:11–17

    CAS  Google Scholar 

  • Harris RR, Andrews MB (1982) Extracellular fluid volume changes in Carcinus maenas during acclimation to low and high environmental salinities. J Exp Biol 99:161–173

    CAS  Google Scholar 

  • Heath JR, Barnes H (1970) Some changes in biochemical composition with season and during the moulting cycle of the common shore crab, Carcinus maenas (L.). J Exp Mar Biol Ecol 5:199–233

    CAS  Google Scholar 

  • Jennings JR, Rainbow PS (1979) Studies on the uptake of cadmium by the crab Carcinus maenas in the laboratory I. Accumulation from seawater and a food source. Mar Biol 50:131–139

    CAS  Google Scholar 

  • Kerkut GA, Moritz PM, Munday KA (1961) Variations of copper concentrations in Carcinus maenas. Cah Biol Mar 2:399–408

    Google Scholar 

  • Lafon M (1948) Nouvelles recherches biochimiques et physiologiques sur le squelette tégumentaire des Crustacés. Bull Inst Océan Monaco 939:1–28

    Google Scholar 

  • Mangum C (1992) Physiological aspects of molting in the blue crab Callinectes sapidus. Am Zool 32:459–469

    CAS  Google Scholar 

  • Martin DJ, Rainbow PS (1998) The kinetics of zinc and cadmium in the haemolymph of the shore crab Carcinus maenas (L.). Aquat Toxicol 40:203–231

    Article  CAS  Google Scholar 

  • Martin J-LM, Wormhoudt A van, Ceccaldi HJ (1977) Zinc-hemocyanin binding in the hemolymph of Carcinus maenas (crustacea, decapoda). Comp Biochem Physiol A 58:193–195

    CAS  Google Scholar 

  • Mykles DL (1980) The mechanism of fluid absorption at ecdysis in the American lobster, Homarus americanus. J Exp Biol 84:89–101

    Google Scholar 

  • Neufeld DS, Cameron JN (1994) Mechanism of the net uptake of water in moulting blue crabs (Callinectes sapidus) acclimated to high and low salinities. J Exp Biol 188:11–23

    PubMed  Google Scholar 

  • Nickerson KW, Holde KE van (1971) A comparison of molluscan and arthropod hemocyanin I. Circular dichroism and absorption spectra. Comp Biochem Physiol B 39:855–872

    CAS  Google Scholar 

  • Páez-Osuna F, Pérez-González R, Izaguirre-Fierro G, Zazueta-Padilla HM, Flores-Campaña LM (1995) Trace metal concentrations and their distribution in the lobster Palinurus inflatus (Bouvier, 1895) from the Mexican Pacific coast. Environ Pollut 90:163–170

    Article  Google Scholar 

  • Passano LM (1960) Molting and its control. In: Waterman TH (ed) The physiology of Crustacea, vol 1. Academic Press, New York, pp 473–536

  • Rainbow PS (1985) Accumulation of Zn, Cu and Cd by crabs and barnacles. Estuar Coast Shelf Sci 21:669–686

    CAS  Google Scholar 

  • Riegel JA, Lockwood APM, Norfolk JRW, Bulleid NC, Taylor PA (1974) Urinary bladder volume and the reabsorption of water from the urine of crabs. J Exp Biol 60:167–181

    Google Scholar 

  • Robertson JD (1937) Some features of the calcium metabolism of the shore crab (Carcinus maenas Pennant). Proc R Soc Lond B 124:162–182

    Google Scholar 

  • Robertson JD (1960) Ionic regulation in the crab Carcinus maenas (L.) in relation to the moulting cycle. Comp Biochem Physiol 1:183–212

    CAS  Google Scholar 

  • Scott-Fordsmand JJ, Depledge MH (1993) The influence of starvation and copper exposure on the composition of the dorsal carapace and distribution of trace metals in the shore crab Carcinus maenas (L.). Comp Biochem Physiol C 106:537–543

    Article  Google Scholar 

  • Scott-Fordsmand JJ, Depledge MH (1997) Changes in the tissue concentrations and contents of calcium, copper and zinc in the shore crab Carcinus maenas (L.) (Crustacea: Decapoda) during the moult cycle and following copper exposure during ecdysis. Mar Environ Res 44:397–414

    CAS  Google Scholar 

  • Siebers D, Lucu C (1973) Mechanisms of intracellular isosmotic regulation: extracellular space of the shore crab Carcinus maenas in relation to environmental salinity. Helgol Meeresunters 25:199–205

    Google Scholar 

  • Skinner DM (1966) Breakdown and reformation of somatic muscle during the molt cycle of the land crab, Gecarcinus lateralis. J Exp Zool 163:115–124

    CAS  PubMed  Google Scholar 

  • Smith DM, Dall W (1982) Blood protein, blood volume and extracellular space relationships in two Penaeus spp. (Decapoda: Crustacea). J Exp Mar Biol Ecol 63:1–15

    CAS  Google Scholar 

  • Stewart JE, Cornick JW, Foley DM, Li MF, Bishop CM (1967) Muscle weight relationship to serum proteins, hemocytes, and hepatopancreas in the lobster, Homarus americanus. J Fish Res Board Can 24:2339–2354

    Google Scholar 

  • Syring RA, Hoexum Brouwer T, Brouwer M (2000) Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue crab Callinectes sapidus. Comp Biochem Physiol C 125:325–332

    Article  CAS  Google Scholar 

  • Taylor HH, Anstiss JM (1999) Copper and haemocyanin dynamics in aquatic invertebrates. Mar Freshw Res 50:907–931

    CAS  Google Scholar 

  • Tchernigovtzeff C (1965) Multiplication cellulaire et régénération au cours du cycle d'intermue des crustacés décapodes. Arch Zool Exp Gén Notes Rev 106:377–497

    Google Scholar 

  • Truchot JP, Boitel F (1992) In vitro and in vivo effects of copper on haemocyanin-O2 binding in the shore crab, Carcinus maenas. Comp Biochem Physiol C 103:339–343

    Article  Google Scholar 

  • Uglow RF (1969a) Haemolymph protein concentrations in portunid crabs I. Studies on adult Carcinus maenas. Comp Biochem Physiol 30:1083–1090

    CAS  PubMed  Google Scholar 

  • Uglow RF (1969b) Haemolymph protein concentrations in portunid crabs II. The effects of imposed fasting on Carcinus maenas. Comp Biochem Physiol 31:959–967

    CAS  Google Scholar 

  • Uglow RF (1969c) Haemolymph protein concentrations in portunid crabs III. The effect of Sacculina. Comp Biochem Physiol 31:969–973

    CAS  Google Scholar 

  • Webb DA (1940) Ionic regulation in Carcinus maenas. Proc R Soc Lond B 129:107–136

    Google Scholar 

  • Weeks JM, Jensen FB, Depledge MH (1993) Acid-base status, haemolymph composition and tissue copper accumulation in the shore crab Carcinus maenas exposed to combined copper and salinity stress. Mar Ecol Prog Ser 97:91–98

    CAS  Google Scholar 

  • Wright DA (1976) Heavy metals in animals from the north east coast. Mar Pollut Bull 7:36–38

    CAS  Google Scholar 

  • Wright DA (1977a) The effect of salinity on cadmium uptake by the tissues of the shore crab Carcinus maenas. J Exp Biol 67:137–146

    CAS  Google Scholar 

  • Wright DA (1977b) The effect of calcium on cadmium uptake by the shore crab Carcinus maenas. J Exp Biol 67:163–173

    CAS  Google Scholar 

  • Zanders IP (1980) Regulation of blood ions in Carcinus maenas (L.). Comp Biochem Physiol A 65:97–108

    Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs, N.J.

  • Zatta P (1984) Zinc transport in the haemolymph of Carcinus maenas (Crustacea: Decapoda). J Mar Biol Assoc UK 64:801–807

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Vibeke Eriksen for technical assistance. This work was supported by grants from the Danish National Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Nørum.

Additional information

Communicated by L. Hagerman, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nørum, U., Bondgaard, M. & Bjerregaard, P. Copper and zinc handling during the moult cycle of male and female shore crabs Carcinus maenas . Marine Biology 142, 757–769 (2003). https://doi.org/10.1007/s00227-002-1003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-002-1003-6

Keywords

Navigation