Advertisement

Marine Biology

, Volume 141, Issue 5, pp 855–862 | Cite as

Seasonal differences in citrate synthase and digestive enzyme activity in larval and postlarval antarctic krill, Euphausia superba

  • B. Meyer
  • R. Saborowski
  • A. Atkinson
  • F. Buchholz
  • U. Bathmann
Article

Abstract

Antarctic krill maintain large population sizes despite dramatic seasonal fluctuations in food availability, but the mechanisms for this are still debated. The aim of this study was to compare seasonal differences in enzyme activity and respiration rates of larval and postlarval krill to provide insights into their overwintering strategies. Respiration rates, activity of the metabolic enzyme citrate synthase (CS), and those of the digestive enzymes laminarinase and total proteinase were measured in austral summer west of the Antarctic Peninsula, and in autumn in the southwestern Lazarev Sea. The 100-fold difference in chlorophyll a concentrations between the two studies is representative of the classic transition from a summer bloom to sparse winter conditions. Correspondingly, adult krill showed reduced respiration rates and CS activity in autumn. However, their digestive enzyme activity was significantly higher, suggesting more efficient assimilation of food at low food levels. Similar-sized larvae showed no summer-autumn differences in respiration rates and enzyme activity, supporting suggestions that they need to feed and grow year-round. However, trends in enzymatic activity varied between the larval stages measured, implying ontogenetic changes in body structure and function.

Keywords

Antarctic Krill Digestive Enzyme Activity Midgut Gland Euphausia Superba Summer Bloom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson A, Snÿder R (1997) Krill-copepod interactions at South Georgia, Antaretica I. Omnivory by Euphausia superba. Mar Ecol Prog Ser 160:63–76CrossRefGoogle Scholar
  2. Atkinson A, Meyer B, Bathmann UV, Stübing D, Hagen W, Schmidt K (2002) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter II. Juveniles and adults. Limnol Oceanogr 47:953–966Google Scholar
  3. Båmstedt U, Gifford DJ, Irigoien X, Atkinson A, Roman M (2000) Feeding. In: Harris R, Wiebe P, Lenz J, Skjødal HR, Huntley M (eds) ICES zooplankton methodological manual. Academic Press, New York, pp 297–399CrossRefGoogle Scholar
  4. Barkley E (1940) Nahrung und Filterapparat des Walkrebschens Euphausia superba Dana. Z Fisch 1:65–156Google Scholar
  5. Buchholz F (1989) Moult cycle activities of chitinolytic enzymes in the integument and digestive tract of the Antarctic krill, Euphausia superba. Polar Biol 9:311–317CrossRefGoogle Scholar
  6. Buchholz F, Saborowski R (1996) A field study on the physiology of digestion in the Antaretic krill, Euphausia superba, with special regard to chitinolytic enzymes. J Plankton Res 18:895–906CrossRefGoogle Scholar
  7. Clarke A, Leakey RJG (1996) The seasonal cycle of phytoplankton, macronutrients and the microbial community in a nearshore Antarctic marine ecosystem. Limnol Oceanogr 41:1281–1294Google Scholar
  8. Clarke ME, Walsh PJ (1993) Effect of nutritional status on citrate synthase activity in Acartia tonsa and Temora longicornis. Limnol Oceanogr 38:414–418CrossRefGoogle Scholar
  9. Clarke ME, Calvi C, Domeier M, Edmonds M, Walsh PJ (1992) Effects of nutrition and temperature on metabolic enzyme activities in larval and juvenile red drum, Sciaenops ocellatus, and lane snapper Lutjanus synagris. Mar Biol 112:31–36CrossRefGoogle Scholar
  10. Cox JL, Willason SW (1981) Laminarinase induction in Calanus pacificus. Mar Biol 2:307–311Google Scholar
  11. Cripps GC, Atkinson A (2000) Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57:31–37CrossRefGoogle Scholar
  12. Daly KL (1990) Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marinal ice zone. Limnol Oceanogr 35:1564–1576Google Scholar
  13. Donachie SP, Saborowski R, Peters G, Buchholz F (1995) Bacterial digestive enzyme activity in the stomach and hepatopancreas of Meganyctiphanes norvegica (Sars M, 1857) J Exp Mar Biol Ecol 188:151–165CrossRefGoogle Scholar
  14. Donnelly J, Torres JJ, Hopkins TL, Lancraft TM (1990) Proximate composition of Antarctic mesopelagic fishes. Mar Biol 106:13–23CrossRefGoogle Scholar
  15. Fraser (1936) On the development and distribution of the young stages of krill Euphausia superba. Discov Rep 14:3–192Google Scholar
  16. Garrison DL, Sullivan CW, Ackley SF (1986) Sea ice microbial communities in Antarctica. BioScience 36:243–250CrossRefGoogle Scholar
  17. Hagen W (1988) On the significance of lipids in the Antarctic zooplankton. Rep Polar Res 49:1–129Google Scholar
  18. Hagen W, Kattner G, Terbrüggen A, Van Vleet ES (2001) Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar Biol 139:95–104CrossRefGoogle Scholar
  19. Harris RP, Samain JF, Moal J, Martin-Jezequel V, Poulet SA (1986) Effects of algal diet on digestive activity in Calanus helgonadicus. Mar Biol 90:353CrossRefGoogle Scholar
  20. Hassett RP, Landry MR (1983) Effects of food-level acclimation on digestive enzyme activities and feeding behaviour of Calanus pacificus. Mar Biol 75:47–55CrossRefGoogle Scholar
  21. Haug A, Myklestad S (1973) Studies on the phytoplankton ecology of the Trondheimsfjord I. The chemical composition of phytoplankton populations. J Exp Mar Biol Ecol 11:15–26CrossRefGoogle Scholar
  22. Hernandez-Leon S, Portillo-Hahnefeld A, Almeida C, Becognee P, Moreno I (2001) Diel feeding behaviour of krill in the Gerlache Strait, Antarctica. Mar Ecol Prog Ser 223:235–242CrossRefGoogle Scholar
  23. Ikeda T (1981) Metabolic activity of larval stages of Antarctic krill. Antaret J US 16:161–162Google Scholar
  24. Ikeda T (1984) Sequences in metabolic rates and elemental composition (C, N, P) during the development of Euphausia superba Dana and estimated food requirements during its life span. J Crustac Biol 4 (spec vol 1):273–284Google Scholar
  25. Ikeda T (1985) Metabolic rates of pelagic marine zooplankton as a function of body mass and temperature. Mar Biol 85:1–11CrossRefGoogle Scholar
  26. Ikeda T, Dixon P (1984) The influence on feeding on the metabolic activity of Antarctic krill (Euphausia superba Dana). Polar Biol 3:1–9CrossRefGoogle Scholar
  27. Ikeda T, Torres JJ, Hernández-León S, Geiger SP (2000) Metabolism. In: Harris R, Wiebe P, Lenz J, Skjødal HR, Huntley M (eds) ICES zooplankton methodological manual. Academic Press, New York, pp 455–520CrossRefGoogle Scholar
  28. Johnson MA, Macaulay MC, Biggs DC (1984) Respiration and excretion within a mass aggregation of Euphausia superba: implications for krill distribution. J Crustac Biol 4:174–184Google Scholar
  29. Jones DA, Kumlu M, Le Vay L, Fletcher DJ (1997) The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: a review. Aquaculture 155:285–295CrossRefGoogle Scholar
  30. Kawagushi K, Ichikawa S, Matsuda O (1986) The overwintering strategy of Antarctic krill (Euphausia superba Dana) under the coastal fast ice off the Ongul Islands in Lutzow-Holm Bay Antarctica. (special issue) Mem Natl Inst Polar Res (Tokyo) 44:67–85Google Scholar
  31. Kils U (1983) Swimming and feeding of Antarctic krill, Euphausia superba — some outstanding energetic and dynamics — some unique morphological details. Ber Polarforsch (Sonderh) 4:130–155Google Scholar
  32. Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba). Discov Rep 32:33–464Google Scholar
  33. Marschall H-P (1985a) Untersuchungen zur Funktionsmorphologie und Nahrungsaufnahme der Larven des Antarktischen Krills, Euphausia superba Dana. Ber Polarforsch 23:1–99Google Scholar
  34. Marschall H-P (1985b) Structural and functional analysis of the feeding appendages of krill larvae. In: Siegfried WR, Condy PR, Laws RM (eds) Antaretic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 346–354Google Scholar
  35. Mayzaud P, Conover RJ (1975) Influence of potential food supply on the activity of digestive enzymes of neritic zooplankton. In: Persone G, Jaspers E (eds) Proceedings of the 10th European Symposium of Marine Biology, vol 2. Universa Press, Wetteren, Belgium, pp 415–427Google Scholar
  36. Mayzaud P, Poulet SA (1978) The importance of the time factor in the response of zooplankton to varying concentrations of naturally occurring particulate matter. Limnol Oceanogr 23:1144–1154Google Scholar
  37. Mayzaud P, Farber-Lorda J, Corre MC (1985) Aspects of the nutritional metabolism of two Antaretic euphausiids: Euphausia superba and Thysonoessa macura. In: Siegfried WR, Condy PR, Laws RM (eds) Antaretic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 330–338Google Scholar
  38. McConville MJ, Ikeda T, Bacic A, Clarke AE (1986) Digestive carbohydrases from the hepatopancreas of two Antarctic euphausiid species (Euphausia superba and E. crystallorophias). Mar Biol 90:371–378CrossRefGoogle Scholar
  39. Meyer B, Atkinson A, Stübing D, Oettl B, Hagen W, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter I. Furcilia III larvae. Limnol Oceanogr 47:943–952Google Scholar
  40. Pakhomov EA, Perissinotto R, Froneman PW, Miller DGM (1997) Energetics and feeding dynamics of Euphausia superba in the South Georgia region during the summer of 1994. J Plankton Res 19:399–423CrossRefGoogle Scholar
  41. Peck LS, Whitehouse MJ (1992) An improved desorber design for use in couloximetry. J Exp Mar Biol Ecol 163:163–167CrossRefGoogle Scholar
  42. Pond DW, Priddle J, Sargent JR, Watkins JL (1995) Laboratory studies of assimilation and egestion of algal lipid by Antarctic krill — methods and initial results. J Exp Mar Biol Ecol 187:253–268CrossRefGoogle Scholar
  43. Power JH, Walsh PJ (1992) Metabolic scaling, buoyancy, and growth in larval Atlantic menhaden, Brevoortia tyrannus. Mar Biol 112:17–22CrossRefGoogle Scholar
  44. Price HJ, Boyd KR, Boyd CM (1988) Omnivorous feeding behaviour of the Antarctic krill Euphausia superba. Mar Biol 97:67–77CrossRefGoogle Scholar
  45. Quetin LB, Ross RM (1985) Feeding by Antarctic krill Euphausia superba: does size matter? In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 372–377Google Scholar
  46. Quetin LB, Ross RM (1991) Behavioural and physiological characteristics of the Antarctic krill, Euphausia superba. Am Zool 31:49–63Google Scholar
  47. Quetin LB, Ross RM, Clarke A (1994) Krill energetics: seasonal and environmental aspects of the physiology of Euphausia superba. In: El-Sayed S (ed) Southern Ocean ecology: the BIOMASS perspective. Cambridge University Press, Cambridge, pp 165–184Google Scholar
  48. Quetin LB, Ross RM, Frazer TK, Habermann KL (1996) Factors affecting distribution and abundance of zooplankton, with an emphasis on Antarctic krill, Euphausia superba. Antarct Res Ser 70:357–371Google Scholar
  49. Ritz DA (2000) Is social aggregation in aquatic organisms a strategy to conserve energy? Can J Fish Aquat Sci 57:633–641CrossRefGoogle Scholar
  50. Ross RM, Quetin LB (1991) Ecological physiology of larval euphausiids, Euphausia superba (Euphausiaceae). Mem Queensl Mus 31:321–333Google Scholar
  51. Saborowski R, Buchholz F (1999) A laboratory study on digestive processes in the Antarctic krill, Euphausia superba, with special regard to chitinolytic enzymes. Polar Biol 21:295–304CrossRefGoogle Scholar
  52. Samain JF, Hernandorena A, Moal J, Daniel JY, Le Coz JR (1985) Amylase and trypsin activities during Artemia development on artificial ayenic media: effect of starvation and specific deletions. J Exp Mar Biol Ecol 86:255–270CrossRefGoogle Scholar
  53. Siegel V, Kalinowski J (1994) Krill demography and small scale processes: a review. In: El-Sayed S (ed) Southern Ocean ecology: the BIOMASS perspective. Cambridge University Press, Cambridge, pp 145–163Google Scholar
  54. Siegel V, Loeb V (1995) Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Mar Ecol Prog Ser 123:45–56CrossRefGoogle Scholar
  55. Stitt M (1984) Citrate synthase (condensing enzyme). In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol IV Chemie, Weinheim, pp 353–358Google Scholar
  56. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Bull Fish Res Bd Can 167:1–310Google Scholar
  57. Thuesen EV, Childress JJ (1993) Metabolic rates enzyme activities and chemical compositions of some deep-sea pelagic worms, particularly Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida, Polychaeta). Deep-Sea Res 1 Oceanogr Res Pap 40:937–951CrossRefGoogle Scholar
  58. Torres JJ, Somero, GN (1988) Metabolism, enzymic activities and cold adaption in Antarctic mesopelagic fishes. Mar Biol 98:169–180CrossRefGoogle Scholar
  59. Ullrich B, Storch V (1993) Development of the stomach in Euphausia superba Dana (Euphausiacea). J Crustac Biol 13:423–431CrossRefGoogle Scholar
  60. Ullrich B, Storch V, Marschall HP (1991) Microscopic anatomy, functional morphology, and ultrastructure of the stomach of Euphausia superba Dana (Crustacea, Euphausiacea). Polar Biol 11:203–211CrossRefGoogle Scholar
  61. Williamson DI (1982) Larval morphology and diversity In: Bliss DE (ed) The biology of Crustacea, vol 2. Embryology, morphology, and genetics. Academic Press, New York, pp 43–110Google Scholar
  62. Wolfe SH, Felgenhauer (1991) Mouthpart and foregut ontogeny in larval, postlarval, and juvenile lobster, Panulirus argus Latreille (Decapoda, Palinuridae). Zool Scripta 20:57–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • B. Meyer
    • 1
  • R. Saborowski
    • 2
  • A. Atkinson
    • 3
  • F. Buchholz
    • 2
  • U. Bathmann
    • 1
  1. 1.Department of Pelagic EcosystemsAlfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Biologische Anstalt Helgoland at the Alfred Wegener InstituteMarine StationHelgolandGermany
  3. 3.Natural Environment Research CouncilBritish Antaretic SurveyCambridgeUK

Personalised recommendations