Skip to main content
Log in

Non-isothermal crystallization and thermal degradation properties of three phase composites from wood flour, high-density polyethylene and basalt fibers

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Basalt fiber can be used as a reinforcing phase to improve the mechanical properties of wood thermoplastic composites. The purpose of this study was to use differential scanning calorimetry to study the effect of the addition of basalt fiber and wood flour on the non-isothermal crystallization kinetics of high-density polyethylene (HDPE)-based composites. The Avrami method and Avrami–Ozawa method were adopted to describe the non-isothermal crystallization process, and Gaussian model was used to calculate the surface activation energy. This study showed that the addition of basalt fiber and wood flour significantly changed the crystallinity of wood flour/high-density polyethylene (HDPE)/basalt fiber three-phase composites. The apparent activation energy of the three-phase composites was calculated using Gaussian multi-peak simulations, and the trend of the conversion rate was modeled. In addition, basalt fiber and wood flour, as nucleating agents, had the ability to accelerate the crystallization of wood flour/high-density polyethylene (HDPE)/basalt fiber three-phase composites without changing the crystallization mechanism of these composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during the current study are not publicly available due to confidentiality but are available from the corresponding author on reasonable request.

References

  • Abderrahim B, Abderrahman E, Mohamed A, Fatima T, Krim O (2015) Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study. World J Environ Eng 3(4):95–110

    Google Scholar 

  • Allegra G, Corradini P, Elias HG, Geil PH, Wunderlich B (1989) IUPAC Commission on macromolecular nomenclature. Pure Appl Chem 61(4):769–785

    Article  CAS  Google Scholar 

  • Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7(12):1103–1112

    Article  CAS  Google Scholar 

  • Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8(2):212–224

    Article  CAS  Google Scholar 

  • Avrami M (1941) Kinetics of phase change, part iii: granulation, phase change and microstructure. J Chem Phys 9(2):177–184

    Article  CAS  Google Scholar 

  • Bai M, Liu Y, Liu L, Yin J, Zhang Y, Zhao D, Roy N (2021) Kinetics of polyethylene pyrolysis in the atmosphere of ethylene. J Therm Anal Calorim 144(2):383–391

    Article  CAS  Google Scholar 

  • Cebe P, Hong SD (1986) Crystallization behavior of poly (ether-ether-ketone). Polymer 27(8):1183–1192

    Article  CAS  Google Scholar 

  • Chen D, Zheng Y, Zhu X (2013) In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Biores Technol 131:40–46

    Article  CAS  Google Scholar 

  • Chen TJ, Wu JL, Zhang JZ, Wu JH, Sun L (2014) Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin. Biores Technol 153:223–229

    Article  CAS  Google Scholar 

  • Cheng JJ, Polak MA, Penlidis A (2011) An alternative approach to estimating parameters in creep models of high-density polyethylene. Polym Eng Sci 51(7):1227–1235

    Article  CAS  Google Scholar 

  • Cumming JW (1984) Reactivity assessment of coals via a weighted mean activation energy. Fuel 63(10):1436–1440

    Article  CAS  Google Scholar 

  • Czigany T, Deak T, Tamas P (2008) Discontinuous basalt and glass fiber reinforced PP composites from textile prefabricates: effects of interfacial modification on the mechanical performance. Compos Interfaces 15(7–9):697–707

    Article  CAS  Google Scholar 

  • Deak T, Czigany T (2009) Chemical composition and mechanical properties of basalt and glass fibers: a comparison. Text Res J 79(7):645–651

    Article  CAS  Google Scholar 

  • Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, David CA, Cai SS, Photos P, Ahmed F (2007) Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog Polym Sci 32(8–9):838–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder M, Wlochowicz A (1983) Kinetics of non-isothermal crystallization of polyethylene and polypropylene. Polymer 24(12):1593–1595

    Article  CAS  Google Scholar 

  • Ge CH, Shi LY, Yang H, Tang SF (2010) Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/barite nanocomposites. Polym Compos 31(9):1504–1514

    Article  CAS  Google Scholar 

  • Graupner N, Albrecht K, Enzler H, Ziegmann G, Müssig J (2016) Influence of reprocessing on fibre length distribution, tensile strength and impact strength of injection moulded cellulose fibre reinforced polylactide (PLA) composites. EXPR Polym Lett 10(8):647–663

    Article  CAS  Google Scholar 

  • Gupta AK, Rana SK, Deopura BL (1994) Crystallization kinetics of high-density polyethylene/linear low-density polyethylene blend. J Appl Polym Sci 51:231–239

    Article  CAS  Google Scholar 

  • Hamouda T, Hassanin AH, Saba N, Demirelli M, Kilic A, Candan Z, Jawaid M (2019) Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes. J Polym Environ 27(3):489–497

    Article  CAS  Google Scholar 

  • Van Hoesen DC, Xia X, Mckenzie ME, Kelton KF (2021) Crystallization kinetics in a 5BaO·8SiO2 glass. J Non-Cryst Solids 553:120479

    Article  CAS  Google Scholar 

  • Hu W, Liu H, Zhao D, Yang Z (2011) Applications and advantages of basalt assembly in construction industry. Adv Mater Res 332–334:1937–1940

    Article  Google Scholar 

  • Huang YY, Nandan B, Chen HL, Liao CS, Jeng US (2004) Cocrystallization behavior in binary blend of crystalline−amorphous diblock copolymers. Macromolecules 37(22):8175–9179

    Article  CAS  Google Scholar 

  • Jankovic B, Manic N, Stojiljkovic D, Jovanovic V (2018) TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches. Fuel 234:447–463

    Article  CAS  Google Scholar 

  • Jhu Y-S, Yang T-C, Hung K-C, Xu J-W, Wu T-L, Wu J-H (2019) Nonisothermal crystallization kinetics of acetylated bamboo fiber-reinforced polypropylene composites. Polymers 11(6):1078

    Article  PubMed Central  CAS  Google Scholar 

  • Joshi A, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 45(14):4953–4968

    Article  CAS  Google Scholar 

  • Kozyrev SV, Volovich IV (2011) The arrhenius formula in kinetic theory and Witten’s spectral asymptotics. J Phys Math Theor 44(21):21502

    Google Scholar 

  • Li J, Jiang Z, Qiu Z (2021) Isothermal melt crystallization kinetics study of cellulose nanocrystals nucleated biodegradable poly(ethylene succinate). Polymer 227:12869

    Google Scholar 

  • Marigo A, Marega C, Causin V, Ferrari P (2004) Influence of thermal treatments, molecular weight, and molecular weight distribution on the crystallization of β-isotactic polypropylene. J Appl Polym Sci 91:1008–1012

    Article  CAS  Google Scholar 

  • Martina M, Hutmacher DW (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym Int 56(2):145–157

    Article  CAS  Google Scholar 

  • Mazur K, Jakubowska P, Romanska P, Kuciel S (2020) Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications. Compos Part B-Eng 202:108399

    Article  CAS  Google Scholar 

  • Mazzanti V, Mollica F (2020) A review of wood polymer composites rheology and its implications for processing. Polymers 12(10):2304

    Article  CAS  PubMed Central  Google Scholar 

  • Muller AJ, Balsamo V and Arnal ML (2005) Nucleation and crystallization in diblock and triblock copolymers. Block copolymer Ii V Abetz 190: 1–63

  • Nguyen V, Hao J, Wang W (2018) Ultraviolet weathering performance of high-density polyethylene/wood-flour composites with a basalt-fiber-included shell. Polymers 10(8):831

    Article  PubMed Central  CAS  Google Scholar 

  • Novitskii AG, Efremov MV (2011) Some aspects of the manufacturing process for obtaining continuous basalt fiber. Glass Ceram 67(11–12):361

    Article  CAS  Google Scholar 

  • Shehzad F, Thomas SP, Al-Harthi MA (2014) Non-isothermal crystallization kinetics of high density polyethylene/graphene nanocomposites prepared by in-situ polymerization. Thermochim Acta 589:226–234

    Article  CAS  Google Scholar 

  • Verkooijen A (2009) Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: dry distiller’s grains with solubles (DDGS) and chicken manure. Energy Fuels 23(1):5695

    Google Scholar 

  • Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, Sbirrazzuoli N (2020) ICTAC Kinetics committee recommendations for analysis of multi-step kinetics. Thermochim Acta 689:178597

    Article  CAS  Google Scholar 

  • White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol 91(1):1–33

    Article  CAS  Google Scholar 

  • Wu Q, Chi K, Wu Y, Lee S (2014) Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Mater Des 60:334–342

    Article  CAS  Google Scholar 

  • Wu R (2012) The application of basalt fiber in building materials. Adv Mater Res 450–451:499–502

    Article  Google Scholar 

  • Zhang J, Koubaa A, Xing D, Liu W, Wang Q, Wang X, Wang H (2020) Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide. Mater Des 191:108589

    Article  CAS  Google Scholar 

  • Zhang X, Huang R (2020) Thermal decomposition kinetics of basalt fiber-reinforced wood polymer composites. Polymers 12(10):2283

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou H, Jia B, Huang H, Mou Y (2020) Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials 13(6):1362

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Bavarian State Institute of Forestry LWF for both supporting the project ‘Easy Beech – Development of economic beech components with focus on medium-sized and local companies’ and funding the project ‘Beech Connect – Optimizing hardwood structures by using modern connections’. We also thank the German Federal Ministry of Food and Agriculture for funding of the project ‘Impact of forest management on sawn timber quality of European beech (Fagus sylvatica L.) and optimizing automatic log grading’) [grant number 22025114]. Finally, we thank the European Union for funding the Horizon 2020 project “A multi-criteria decision support system for a common forest management to strengthen forest resilience, harmonize stakeholder interests and ensure sustainable wood flows” (ONEforest) [grant number 101000406]. We are grateful to Microtec (Bressanone, Italy) for assisting with data collection .

Author information

Authors and Affiliations

Authors

Contributions

JWGVDK, HP and AR initiated the project. AR. sampled the material, analyzed and interpreted the data. AR, AK, HP and JWGVDK wrote the manuscript.

Corresponding author

Correspondence to Runzhou Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests .

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Teng, Z. Non-isothermal crystallization and thermal degradation properties of three phase composites from wood flour, high-density polyethylene and basalt fibers. Wood Sci Technol 56, 1103–1125 (2022). https://doi.org/10.1007/s00226-022-01391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-022-01391-0

Navigation