Skip to main content

Effect of glycerol-maleic anhydride treatment on technological properties of short rotation teak wood

Abstract

Short rotation teak wood has been produced to overcome the scarcity of long rotation teak. The short rotation teak has low quality, especially in dimensional stability and durability. Glycerol-maleic anhydride (GMA) treatment as non-biocidal wood preservation system was applied to improve technological properties, especially dimensional stability and durability. Impregnation with 10% w/w aqueous solution of GMA followed by thermal modification at 150 and 220 °C under inert conditions was investigated on short rotation teak sapwood. The following technological properties were studied: chemical compound; mass alteration; density; leachability; dimensional stability (volumetric swelling, anti-swelling efficiency (ASE), and water uptake; modulus of elasticity; modulus of rupture; decay resistance; and termite resistance. The results show that chemical modification with 10% GMA combined with thermal modification increased ASE by 62.31% and 73.22% for 150 and 220 °C, respectively, indicating improved dimensional stability. Decay resistances of GMA-thermal treated teak wood against fungal decay of Coriolus versicolor, Pycnoporus sanguineus, and Coniophora puteana were categorized to be class 1 (very durable). Weight loss of GMA-thermal at 220 °C against termite attacks was 0.19%, which presented excellent durability (rating 10) against subterranean termites. Fourier transform infrared and carbon 13 nuclear magnetic resonance analyses indicate that the presence of reaction between GMA polymer with lignin occurred after thermal treatment at 220 °C. Thermogravimetric analysis shows that GMA-thermal treatment also presented better thermal stability than untreated wood. GMA-thermal treatment gave a significant improvement in dimensional stability and resistance to wood-decaying fungi and termite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alshammari BA, Alotaibi MD, Alothman OY, Sanjay MR, Kian LK, Almutairi Z, Jawaid M (2019) A new study on characterization and properties of natural fibers obtained from olive tree (Olea europaea L.) residues. J Poly Environ 27(11):2334–2340. https://doi.org/10.1007/s10924-019-01526-8

    CAS  Article  Google Scholar 

  2. Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzf 57(5):539–546. https://doi.org/10.1515/HF.2003.080

    CAS  Article  Google Scholar 

  3. Darmawan W, Nandika D, Sari RK, Sitompul A, Rahayu I, Gardner D (2015) Juvenile and mature wood characteristics of short and long rotation teak in Java. IAWA J 36(4):429–443. https://doi.org/10.1163/22941932-20150112

    Article  Google Scholar 

  4. EN 113 (1996) Wood preservatives—test method for determining the protective effectiveness against wood destroying basidiomycetes—determination of the toxic values

  5. EN 310 (1993) Wood-based panels—determination of modulus of elasticity in bending and of bending strength

  6. EN 350-1 (1994) Durability of wood and wood-based products—natural durability of solid wood

  7. Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. Bioresearch 4(1):370–404. https://doi.org/10.15376/biores.4.1.370-404

    CAS  Article  Google Scholar 

  8. Gakhan G, Deniz A (2009) The influence of mass loss on the mechanical properties of heat-treated black pine wood. Wood Res Slovakia 54(4):33–42

    Google Scholar 

  9. Gérardin P (2015) New alternatives for wood preservation based on thermal and chemical modification of wood: a review. Ann for Sci 73(3):559–570. https://doi.org/10.1007/s13595-015-0531-4

    Article  Google Scholar 

  10. González-Peña MM, Curling SF, Hale MDC (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym Degrad Stab 94(12):2184–2193. https://doi.org/10.1016/j.polymdegradstab.2009.09.003

    CAS  Article  Google Scholar 

  11. Gupta BS, Jelle BP, Gao T (2015) Wood facade materials ageing analysis by FTIR spectroscopy. Proc Inst Civil Eng Const Mater 168(5):219–231. https://doi.org/10.1680/coma.13.00021

    CAS  Article  Google Scholar 

  12. Hakkou M, Pe M, Pétrissans M (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab 91:393–397. https://doi.org/10.1016/j.polymdegradstab.2005.04.042

    CAS  Article  Google Scholar 

  13. Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, West Sussex, England

    Book  Google Scholar 

  14. Hill CAS, Curling SF, Kwon JH, Marty V (2009) Decay resistance of acetylated and hexanoylated hardwood and softwood species exposed to Coniophora puteana. Holzf 63:619–625. https://doi.org/10.1515/HF.2009.124

    CAS  Article  Google Scholar 

  15. Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Roh Werkst 60(1):1–6. https://doi.org/10.1007/s00107-001-0261-1

    CAS  Article  Google Scholar 

  16. Kocaefe D, Younsi R, Chaudry B, Kocaefe Y (2006) Modelling of heat and mass transfer during high temperature treatment of aspen. Wood Sci Technol 40(5):371–391. https://doi.org/10.1007/s00226-006-0069-6

    CAS  Article  Google Scholar 

  17. Kong L, Guan H, Wang X (2018) In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustain Chem Eng 6(3):3349–3357. https://doi.org/10.1021/acssuschemeng.7b03518

    CAS  Article  Google Scholar 

  18. Lande S, Eikenes M, Westin M (2004a) Chemistry and ecotoxicology of furfurylated wood. Scand J for Res Suppl 19:14–21. https://doi.org/10.1080/02827580410017816

    Article  Google Scholar 

  19. Lande S, Westin M, Schneider M (2004b) Properties of furfurylated wood. Scand J for Res Suppl 19:22–30. https://doi.org/10.1080/0282758041001915

    Article  Google Scholar 

  20. Lande S, Westin M, Schneider MH (2004c) Eco-efficient wood protection: furfurylated wood as alternative to traditional wood preservation. Manag Environ Qual 15:529–540. https://doi.org/10.1108/14777830410553979

    Article  Google Scholar 

  21. Manimaran P, Saravanan SP, Sanjay MR, Siengchin S, Jawaid M, Khan A (2019) Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J Mat Res Tech 8(2):1952–1963. https://doi.org/10.1016/j.jmrt.2018.12.015

    CAS  Article  Google Scholar 

  22. Martha R, Mubarok M, Batubara I, Rahayu IS, Setiono L, Darmawan W, Akong FO, George B, Gérardin C, Gérardin P (2021) Effect of furfurylation treatment on technological properties of short rotation teak wood. J Mat Res Tech 12:1689–1699. https://doi.org/10.1016/j.jmrt.2021.03.092

    CAS  Article  Google Scholar 

  23. Mubarok M, Dumarcay S, Militz H, Candelier K, Thevenon MF, Gérardin P (2019) Comparison of diferent treatments based on glycerol or polyglycerol additives to improve properties of thermally modifed wood. Eur J Wood Prod 77(5):799–810. https://doi.org/10.1007/s00107-019-01429-4

    CAS  Article  Google Scholar 

  24. Mubarok M, Militz M, Dumarcay S, Darmawan W, Hadi YS, Gérardin P (2020) Resistance against subterranean termite of beech wood impregnated with different derivatives of glycerol or polyglycerol and maleic anhydride followed by thermal modification: a field test study. Eur J Wood Prod 78(2):387–392. https://doi.org/10.1007/s00107-020-01503-2

    CAS  Article  Google Scholar 

  25. Mubarok M, Militz M, Dumarcay S, Darmawan W, Hadi YS, Gérardin P (2021) Mechanical properties and biological durability in soil contact of chemically modified wood treated in an open or in a closed system using glycerol/maleic anhydride systems. Wood Mat Sci Eng. https://doi.org/10.1080/17480272.2021.1872701

    Article  Google Scholar 

  26. NF X 41-568 (2014) Wood preservatives—laboratory method for obtaining samples for analysis to measure losses by leaching into water or synthetic sea water. AFNOR. https://www.boutique.afnor.org/fr-fr/norme/nf-x41568/produits-de-preservation-du-bois-methode-de-laboratoire-pour-obtenir-des-ec/fa181499/42846

  27. Nguila Inari G, Mounguengui S, Dumarcay S, Petrissans M, Gérardin P (2007) Evidence of char formation during wood heat treatment by mild pyrolysis. Poly Deg Stab 92(6):99–1002. https://doi.org/10.1016/j.polymdegradstab.2007.03.003

    CAS  Article  Google Scholar 

  28. Okon KE, Lin F, Lin X, Chen C, Chen Y, Huang B (2017) Modification of Chinese fir (Cunninghamia lanceolata L.) wood by silicone oil heat treatment with micro-wave pretreatment. Eur J Wood Prod 76(1):221–228. https://doi.org/10.1007/s00107-017-1165-z

    CAS  Article  Google Scholar 

  29. Pfriem A, Dietrich T, Buchelt B (2012) Furfuryl alcohol impregnation for improved plasticization and fixation during the densification of wood. Holzf 66(2):215–218. https://doi.org/10.1515/HF.2011.134

    CAS  Article  Google Scholar 

  30. Popper R, Niemz P, Eberle G (2005) Investigations on the sorption and swelling properties of thermally treated wood. Holz Roh Werkst 63(2):135–148

    CAS  Article  Google Scholar 

  31. Pratiwi LA, Darmawan W, Priadi T, George B, Merlin A, Gérardin C, Dumarçay S, Gérardin P (2019) Characterization of thermally modified short and long rotation teaks and the effects on coatings performance. Mad Cien y Tech 21(2):209–222. https://doi.org/10.4067/S0718-221X2019005000208

    CAS  Article  Google Scholar 

  32. Ramsden MJ, Blake FSR, Fey NJ (1997) The effect of acetylation on the mechanical properties, hydrophobicity and dimensional stability of Pinus sylvestris. Wood Sci Technol 31:97–104. https://doi.org/10.1007/bf00705925

    CAS  Article  Google Scholar 

  33. Rautkari L, Hill CAS, Curling S, Jalaludin Z, Ormondryoyd G (2013) What is the role of the accessibility of wood hydroxyl group in controlling moisture content? J Master Sci 48(18):6352–6356. https://doi.org/10.1007/s10853-013-7434-2

    CAS  Article  Google Scholar 

  34. Rizanti DE, Darmawan W, George B, Merlin A, Dumarcay S, Chapuis H, Gérardin C, Gelhaye E, Raharivelomanana P, Sari RK, Syafii W, Mohamed R, Gérardin P (2018) Comparison of teak wood properties according to forest management: short versus long rotation. Ann for Sci. https://doi.org/10.1007/s13595-018-0716-8

    Article  Google Scholar 

  35. Roussel C, Marchetti V, Lemor A, Wazniak B, Loubinoux B, Gérardin P (2001) Chemical modifcation of wood by polyglycerol/maleic anhydride treatment. Holzf 55:57–62. https://doi.org/10.1515/HF.2001.009

    CAS  Article  Google Scholar 

  36. Rowell RM (2005) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton

    Book  Google Scholar 

  37. Rowell RM (2006) Acetylation of wood. For Prod J 56(9):1993–1995. https://doi.org/10.1021/bk-2014-1158.ch018

    Article  Google Scholar 

  38. Salman S, Pétrissans A, Thévenon MF, Dumarcay S, Perrin D, Pollier B, Gérardin P (2014) Development of new wood treatments combining boron impregnation and thermo modifcation: efect of additives on boron leachability. Eur J Wood Prod 72:355–365. https://doi.org/10.1007/s00107-014-0787-7

    CAS  Article  Google Scholar 

  39. Salman S, Pétrissans A, Thévenon MF, Dumarcay S, Gérardin P (2016) Decay and termite resistance of pine blocks impregnated with different additives and subjected to heat treatment. Eur J Wood Prod 74(1):37–42. https://doi.org/10.1007/s00107-015-0972-3

    CAS  Article  Google Scholar 

  40. Salman S, Thévenon MF, Pétrissans A, Dumarcay S, Candelier K, Gérardin P (2017) Improvement of the durability of heat-treated wood against termites. Maderas Cienc y Tecnol 19(3):317–328. https://doi.org/10.4067/S0718-221X2017005000027

    CAS  Article  Google Scholar 

  41. Sarvaramini A, Larachi F (2017) Pyrolysis kinetics of pre-torrefied woody biomass based on torrefaction severity—experiments and model verification. Ind Eng Chem Res 56(45):12972–12983. https://doi.org/10.1021/acs.iecr.7b01123

    CAS  Article  Google Scholar 

  42. Schultz TP, Nicholas DD, Preston AF (2007) A brief review of the past, present and future of wood preservation. Pest Manag Sci 63(8):784–788. https://doi.org/10.1002/ps.1386

    CAS  Article  PubMed  Google Scholar 

  43. Shi JL, Kocaefe D, Amburgey T, Zhang JL (2007) A comparative study on brown rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood. Holz Roh Werkst 65(5):353–358. https://doi.org/10.1007/s00107-007-0178-4

    CAS  Article  Google Scholar 

  44. Sivrikaya H, Can A, de Troya T, Conde M (2015) Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas Cienc y Tecnol 17(3):559–570. https://doi.org/10.4067/S0718-221X2015005000050

    Article  Google Scholar 

  45. SNI 7207-2014 (2014) Uji Ketahanan Kayu dan Produk Kayu terhadap Organisme Perusak Kayu. (Test for resistance of wood and wood products against wood destroying organisms). Badan Standarisasi Nasional, Jakarta (National Standardization Bureau, Jakarta, Indonesia)

  46. Soulounganga P, Loubinoux B, Wozniak E, Lemor A, Gérardin P (2004) Improvement of wood properties by impregnation with polyglycerol methacrylate. Holz Roh- Werkst 62(4):281–285. https://doi.org/10.1007/s00107-004-0485-y

    CAS  Article  Google Scholar 

  47. Vu MT, Li J (2010) Effect of heat treatment on the change in color and dimensional stability of acacia hybrid wood. BioResources 5(2):1257–1267. https://doi.org/10.15376/biores.5.2.1257-1267

    Article  Google Scholar 

  48. Wojcieszak R, Santarelli F, Paul S, Dumeignil F, Cavani F, Gonçalves RV (2015) Recent developments in maleic acid synthesis from bio-based chemicals. Sustain Chem Process 3:1–11. https://doi.org/10.1186/s40508-015-0034-5

    CAS  Article  Google Scholar 

  49. Yan L, Morrell JJ (2014) Effects of thermal modification on physical and mechanical properties of Douglas-fr heartwood. Bioresource 9:7152–7161. https://doi.org/10.15376/biores.9.4.7152-7161

    CAS  Article  Google Scholar 

  50. Yan L, Cao J, Gao W, Zhou X, Zhao G (2011) Interaction between glycerin and wood at various temperatures from stress relaxation approach. Wood Sci Technol 45:215–222. https://doi.org/10.1007/s00226-010-0322-x

    CAS  Article  Google Scholar 

Download references

Acknowledgements

LERMAB is supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01. Lab of Excellence ARBRE). The authors want also to thank Lorraine University d'Excellence (LUE) initiative for the Master grant allowing the stay of the first author at Université de Lorraine in 2020.

Funding

This work was supported by Directorate for Research and Community Service of the Ministry of RISTEK DIKTI: [Grant Number 077/SP2H/LT/DRPM/2021] and by PERHUTANI Research and Development Centre Cepu.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wayan Darmawan or Philippe Gérardin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martha, R., Mubarok, M., Batubara, I. et al. Effect of glycerol-maleic anhydride treatment on technological properties of short rotation teak wood. Wood Sci Technol 55, 1795–1819 (2021). https://doi.org/10.1007/s00226-021-01340-3

Download citation