Skip to main content

Characteristics of nanocellulose crystals from balsa and kapok fibers at different ammonium persulfate concentrations

Abstract

Balsa and kapok fibers are by-products of community plantations. Both fibers have not been optimally utilized in Indonesia. The high holocellulose content and low lignin content of these fibers indicate the potential to be used as a nanocellulose raw material with a simple extraction. The objective of this study was to extract cellulose nanocrystals (CNCs) from balsa and kapok fibers through a direct extraction without pre-treatment. CNCs from balsa and kapok fibers were prepared by a one-step procedure with ammonium persulfate solution (APS) at concentrations of 1, 1.5, and 2 mol/L. The CNCs were characterized by determining their morphology, functional groups, crystallinity, and thermal stability using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis, respectively. The results showed that the diameter of the CNCs was in the range of 1.25–11.87 nm depending on the APS concentration and the fiber type. APS dissolved the lignin and hemicellulose, which led to an increase in the CNCs crystallinity with an increasing APS concentration. The decrease in the thermal stability of the CNCs was thought to be due to the increase in the surface area of the particles and the presence of carboxyl groups in the CNCs. This research revealed that balsa and kapok fibers could be used as raw materials to produce nanocellulose in one-step using ammonium persulfate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475

    CAS  Article  Google Scholar 

  2. Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Narine SS (2013) Environmental- friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92(2):1477–1483

    CAS  PubMed  Article  Google Scholar 

  3. Adel A, El-Shafei A, Ibrahim A, Al-Shemy M (2018) Extraction of oxidized nanocellulose from date palm (Phoenix Dactylifera L.) sheath fibers: influence of CI and CII polymorphs on the properties of chitosan/bionanocomposite films. Ind Crop Prod 124:155–165

    CAS  Article  Google Scholar 

  4. Asrofi M, Abral H, Kasim A, Pratoto A, Mahardika M, Park JW, Kim HJ (2018) Isolation of nanocellulose from water hyacinth fiber (WHF) produced via digester-sonication and its characterization. Fibers Polym 19(8):1618–1625

    CAS  Article  Google Scholar 

  5. Bashar MM, Zhu H, Yamamoto S, Mitsuishi M (2019) Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose 26(6):3671–3684

    CAS  Article  Google Scholar 

  6. Castro-Guerrero CF, Gray DG (2014) Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21(4):2567–2577

    CAS  Article  Google Scholar 

  7. Chandra J, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166

    Article  CAS  Google Scholar 

  8. Chen X, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85(1):245–250

    CAS  Article  Google Scholar 

  9. Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2(1):251–258

    CAS  Article  Google Scholar 

  10. de Souza AG, de Lima GF, Colombo R, Rosa DS (2020) A new approach for the use of anionic surfactants: nanocellulose modification and development of biodegradable nanocomposites. Cellulose 27(10):5707–5728

    Article  CAS  Google Scholar 

  11. Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew A, Oksman K, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090

    CAS  Article  Google Scholar 

  12. Draman SFS, Daik R, Latif FA, El-Sheikh SM (2013) Characterization and thermal decomposition kinetics of kapok (Ceiba pentandra L.)–based cellulose. BioResour 9(1):8–23

    Google Scholar 

  13. Goh KY, Ching YC, Chuah CH, Abdullah LC, Liou NS (2016) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23(1):379–390

    CAS  Article  Google Scholar 

  14. Hu Y, Tang L, Lu Q, Wang S, Chen X, Huang B (2014) Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21(3):1611–1618

    CAS  Article  Google Scholar 

  15. Huang X, Lim TT (2006) Performance and mechanism of a hydrophobic–oleophilic kapok filter for oil/water separation. Desalination 190(1–3):295–307

    CAS  Article  Google Scholar 

  16. Joonobi M, Harun J, Tahir PM, Zaini LH, SaifulAzry S, Makinejad MD (2010) Characteristic of nanofibers extracted from kenaf core. BioResour 5(4):2556–2566

    Google Scholar 

  17. Khan E, Virojnagud W, Ratpukdi T (2004) Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 57(7):681–689

    CAS  PubMed  Article  Google Scholar 

  18. Khanjanzadeh H, Park BD (2020) Characterization of carboxylated cellulose nanocrystals from recycled fiberboard fibers using ammonium persulfate oxidation. J Korean Wood Sci Technol 48(2):231–244

    Google Scholar 

  19. Khanjanzadeh H, Park BD (2021) Optimum oxidation for direct and efficient extraction of carboxylated cellulose nanocrystals from recycled MDF fibers by ammonium persulfate. Carbohydr Polym 251:117029. https://doi.org/10.1016/j.carbpol.2020.117029

    CAS  Article  PubMed  Google Scholar 

  20. Lam E, Leung AC, Liu Y, Majid E, Hrapovic S, Male KB, Luong JH (2013) Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustain Chem Eng 1(2):278–283

    CAS  Article  Google Scholar 

  21. Leung AC, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JH (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3):302–305

    CAS  PubMed  Article  Google Scholar 

  22. Lim TT, Huang X (2007) Evaluation of kapok (Ceiba Pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 66(5):955–63

    CAS  PubMed  Article  Google Scholar 

  23. Liu Y, Liu Y, Zhang D, Zhang R, Li Z (2016) Kapok fiber: a natural biomaterial for highly specific and efficient enrichment of sialoglycopeptides. Anal Chem 88(2):1067–1072

    CAS  PubMed  Article  Google Scholar 

  24. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86(3):1291–1299

    CAS  Article  Google Scholar 

  25. Mascheroni E, Rampazzo R, Ortenzi MA, Piva G, Bonetti S, Piergiovanni L (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23(1):779–793

    CAS  Article  Google Scholar 

  26. Oun AA, Rhim JW (2017) Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym 174:484–492

    CAS  PubMed  Article  Google Scholar 

  27. Oun AA, Rhim JW (2018) Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method. Cellulose 25(4):2143–2149

    CAS  Article  Google Scholar 

  28. Purnawati R, Febrianto F, Wistara INJ, Nikmatin S, Hidayat W, Lee SH, Kim NH (2018) Physical and chemical properties of Kapok (Ceiba pentandra) and balsa (Ochroma pyramidale) fibers. J Korean Wood Sci Technol 46(4):393–401

    Google Scholar 

  29. Rashid S, Dutta H (2020) Characterization of nanocellulose extracted from short, medium and long grain rice husks. Ind Crop Prod 154:112627

    CAS  Article  Google Scholar 

  30. Saha P, Manna S, Chowdhury SR, Sen R, Roy D, Adhikari B (2010) Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour Technol 101(9):3182–3187

    CAS  PubMed  Article  Google Scholar 

  31. Segal LGJMA, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    CAS  Article  Google Scholar 

  32. Voisin H, Bergström L, Liu P, Mathew AP (2017) Nanocellulose-based materials for water purification. Nanomater 7(3):57

    Article  CAS  Google Scholar 

  33. Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    CAS  PubMed  Article  Google Scholar 

  34. Xu W, Mu B, Wang A (2016) Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor. Electrochim Acta 194:84–94

    CAS  Article  Google Scholar 

  35. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    CAS  Article  Google Scholar 

  36. Yanti H, Syafii W, Wistara NJ, Febrianto F, Kim NH (2019) Effect of biological and liquid hot water pretreatments on ethanol yield from mengkuang (Pandanus artocarpus Griff). J Korean Wood Sci Technol 47(2):145–162

    Google Scholar 

  37. Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4(5):2632–2643

    CAS  Article  Google Scholar 

  38. Zaini LH, Jonoobi M, Tahir PM, Karimi S (2013) Isolation and characterization of cellulose whiskers from kenaf (Hibiscus cannabinus L.) bast fibers. J Biomater Nanobiotechnol 4:1–8

    Article  Google Scholar 

  39. Zaini LH, Paridah MT, Jawaid M, Othman AY, Juliana AH (2014) Effect of kenaf cellulose whiskers on cellulose acetate butyrate nanocomposites properties. Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley, New York, pp 341–353

    Google Scholar 

  40. Zaini LH, Febrianto F, Wistara INJ, Marwanto N, Maulana MI, Lee SH, Kim NH (2019) Effect of ammonium persulfate concentration on characteristics of cellulose nanocrystals from oil palm frond. J Korean Wood Sci Technol 47(5):597–606

    Google Scholar 

  41. Zhang K, Sun P, Liu H, Shang S, Song J, Wang D (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr Polym 138:237–243

    CAS  PubMed  Article  Google Scholar 

  42. Zhang H, Chen Y, Wang S, Ma L, Yu Y, Dai H, Zhang Y (2020) Extraction and comparison of cellulose nanocrystals from lemon (citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydr Polym 238:116180

    CAS  PubMed  Article  Google Scholar 

  43. Zhuang J, Li M, Pu Y, Ragauskas AJ, Yoo CG (2020) Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl Sci 10(12):4345

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Deputy of Strengthening for Research and Development, Ministry of Research and Technology/National Research and Innovation Agency, Republic of Indonesia due to this financial support for this research with a scheme of the Master Program of Education Leading to Doctoral Degree for Excellent Graduates (PMDSU) (No.4123/IT3.L1/PN/2020) and WCR (No. 2345 /IT3.L1/PN/2021). We would like to thank to the Indonesian Institute of Sciences, Biomaterials Research Center for support TGA analysis. This study was also supported by the Science and Technology Support Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (MSIT) (NRF-2019K1A3A9A01000018), and the Basic Science Research Program through the NRF, funded by the Ministry of Education (No.2016R1D1A1B01008339 and No.2018R1A6A1A03025582).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fauzi Febrianto or Nam Hun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marwanto, M., Maulana, M.I., Febrianto, F. et al. Characteristics of nanocellulose crystals from balsa and kapok fibers at different ammonium persulfate concentrations. Wood Sci Technol 55, 1319–1335 (2021). https://doi.org/10.1007/s00226-021-01319-0

Download citation