Skip to main content

Initial characteristics of the dried poplar fiber as an accessibility indicator for its enzymatic digestibility in the whole hydrolysis process

Abstract

This study investigated the relationship between the initial characteristics of poplar fibers changed by drying and its enzymatic digestibility (cellulose and xylan) in the whole hydrolysis process. The results showed drying has an inhibitory effect on enzymatic hydrolysis. Based on the results and statistical analysis, a drying index was proposed to represent the accessibility of the dried poplar fiber to enzymes, which is expressed as the ratio of water retention value to crystallinity index. Cellulose digestibility, xylan digestibility, and total substrate digestibility all showed a significantly linear positive correlation with the drying index in the whole hydrolysis process. The synergistic effect of xylanase in enzymatic cocktails changed regularly, but the weak synergistic effect always occurs first and then the strong synergistic effect. The difference in inhibition caused by different drying conditions increased first and then stabilized or decreased slowly, which was found in the regular changes of the slope in the linear relationship. Therefore, the substrate characteristics after swelling should have a certain relationship with its initial characteristics and change according to certain rules during enzymatic hydrolysis. This paper reveals the possible hydrolysis process, which will further promote the research into the mechanism of enzymatic hydrolysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Andersen SLF, Castoldi R, Garcia JAA, Bracht A, Peralta RA, de Lima EA, Helm CV, Moreira RDFP, Peralta RM (2019) Improving enzymatic saccharification of Eucalyptus grandis branches by ozone pretreatment. Wood Sci Technol 53(1):49–69. https://doi.org/10.1007/s00226-018-1061-7

    CAS  Article  Google Scholar 

  2. Chandra R, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons’ staining technique. Biotechnol Progr 24(5):1178–1185

    CAS  Article  Google Scholar 

  3. Crowe JD, Zarger RA, Hodge DB (2017) Relating nanoscale accessibility within plant cell walls to improved enzyme hydrolysis yields in corn stover subjected to diverse pretreatments. J Agr Food Chem 65(39):8652–8662. https://doi.org/10.1021/acs.jafc.7b03240

  4. Diniz JF, Gil MH, Castro J (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37(6):489–494

    Article  Google Scholar 

  5. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002

    CAS  Article  PubMed  Google Scholar 

  6. Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN (2001) Do enzymatic hydrolyzability and simons’ stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol Progr 17(6):1049–1054. https://doi.org/10.1021/bp0101177

    CAS  Article  Google Scholar 

  7. Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6(1):433–438. https://doi.org/10.1021/bm040068x

    CAS  Article  PubMed  Google Scholar 

  8. Fan LT, Lee YH, Beardmore DH (1980a) Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22(1):177–199. https://doi.org/10.1002/bit.260220113

    CAS  Article  Google Scholar 

  9. Fan LT, Lee YH, Beardmore DH (1980b) Major chemical and physical features of cellulosic materials as substrates for enzymatic hydrolysis. In: Advances in Biochemical Engineering, Volume 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0007190

  10. Fan LT, Lee YH, Beardmore DR (1981) The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol Bioeng 23(2):419–424

    CAS  Article  Google Scholar 

  11. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. https://doi.org/10.1007/s10570-013-0030-4

    CAS  Article  Google Scholar 

  12. Goshadrou A, Karimi K, Lefsrud M (2013) Characterization of ionic liquid pretreated aspen wood using semi-quantitative methods for ethanol production. Carbohyd Polym 96(2):440–449. https://doi.org/10.1016/j.carbpol.2013.04.017

    CAS  Article  Google Scholar 

  13. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate. Febs J 277(6):1571–1582. https://doi.org/10.1111/j.1742-4658.2010.07585.x

    CAS  Article  PubMed  Google Scholar 

  14. Herbaut M, Zoghlami A, Paës G (2018a) Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification. Biotechnol Biofuels. https://doi.org/10.1186/s13068-018-1267-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herbaut M, Zoghlami A, Habrant A, Falourd X, Foucat L, Chabbert B, Paës G (2018b) Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnol Biofuels 11(1):52. https://doi.org/10.1186/s13068-018-1053-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Hubbe MA, Venditti RA, Rojas OJ (2007) What happens to cellilosic fibers during papermaking and recycling? Rev Bioresour 2(4):739–788

    CAS  Article  Google Scholar 

  17. Ju X, Grego C, Zhang X (2013) Specific effects of fiber size and fiber swelling on biomass substrate surface area and enzymatic digestibility. Bioresour Technol 144:232–239. https://doi.org/10.1016/j.biortech.2013.06.100

    CAS  Article  PubMed  Google Scholar 

  18. Junior CS, Milagres AMF, Ferraz A, Carvalho W (2013) The effects of lignin removal and drying on the porosity and enzymatic hydrolysis of sugarcane bagasse. Cellulose 20(6):3165–3177. https://doi.org/10.1007/s10570-013-0032-2

    CAS  Article  Google Scholar 

  19. Lee SB, Kim IH, Ryu DDY, Taguchi H (1983) Structural properties of cellulose and cellulase reaction mechanism. Biotechnol Bioeng 25(1):33–51. https://doi.org/10.1002/bit.260250105

    CAS  Article  PubMed  Google Scholar 

  20. Leu S, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenerg Res 6(2):405–415. https://doi.org/10.1007/s12155-012-9276-1

    CAS  Article  Google Scholar 

  21. Li Y, Li B, Mo W, Yang W, Wu S (2019) Influence of residual lignin and thermal drying on the ultrastructure of chemical hardwood pulp and its enzymatic hydrolysis properties. Cellulose 26(3):2075–2085. https://doi.org/10.1007/s10570-018-2184-6

    CAS  Article  Google Scholar 

  22. Liu W, Chen W, Hou Q, Zhang J, Wang B (2017) Surface lignin change pertaining to the integrated process of dilute acid pre-extraction and mechanical refining of poplar wood chips and its impact on enzymatic hydrolysis. Bioresour Technol 228:125–132. https://doi.org/10.1016/j.biortech.2016.12.063

    CAS  Article  PubMed  Google Scholar 

  23. Lu M, Li J, Han L, Xiao W (2019) An aggregated understanding of cellulase adsorption and hydrolysis for ball-milled cellulose. Bioresour Technol 273:1–7. https://doi.org/10.1016/j.biortech.2018.10.037

    CAS  Article  PubMed  Google Scholar 

  24. Luo X, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb Tech 48(1):92–99. https://doi.org/10.1016/j.enzmictec.2010.09.014

    CAS  Article  Google Scholar 

  25. Meng X, Wells T, Sun Q, Huang F, Ragauskas A (2015) Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of populus. Green Chem 17(8):4239–4246. https://doi.org/10.1039/C5GC00689A

    CAS  Article  Google Scholar 

  26. Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotech 27:150–158. https://doi.org/10.1016/j.copbio.2014.01.014

    CAS  Article  PubMed  Google Scholar 

  27. Mo W, Ke K, Shen X, Li B (2020a) The influence of “thermal drying pretreatment” on enzymatic hydrolysis of cellulose and xylan in poplar fibers with high lignin content. Carbohydr Polym 228:115400. https://doi.org/10.1016/j.carbpol.2019.115400

    CAS  Article  PubMed  Google Scholar 

  28. Mo W, Li B, Chai X (2020b) Impact of fiber initial water content on the water retention capacity of poplar APMP fibers during the thermal drying. Wood Sci Technol 54(1):227–235. https://doi.org/10.1007/s00226-019-01148-2

    CAS  Article  Google Scholar 

  29. Mo W, Li B, Li Y, Li Y, Wu S (2019) Overcoming the drying-induced pore closure of APMP poplar fibers in old newsprint by surfactant treatment to promote enzymatic hydrolysis of the cellulose. Cellulose 26(9):5529–5541. https://doi.org/10.1007/s10570-019-02471-4

    CAS  Article  Google Scholar 

  30. Paës G, Navarro D, Benoit Y, Blanquet S, Chabbert B, Chaussepied B, Coutinho PM, Durand S, Grigoriev IV, Haon M, Heux L, Launay C, Margeot A, Nishiyama Y, Raouche S, Rosso M, Bonnin E, Berrin J (2019) Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance. Biotechnol Biofuels 12(1):76. https://doi.org/10.1186/s13068-019-1417-8

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pino MS, Rodríguez-Jasso RM, Michelin M, Ruiz HA (2019) Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohyd Polym 211:349–359. https://doi.org/10.1016/j.carbpol.2019.01.111

    CAS  Article  Google Scholar 

  32. Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. Bioresources 7(4):6077–6108. https://doi.org/10.15376/biores.7.4.6077-6108

    Article  Google Scholar 

  33. Przybysz Buzała K, Kalinowska H, Przybysz P, Małachowska E (2017) Conversion of various types of lignocellulosic biomass to fermentable sugars using kraft pulping and enzymatic hydrolysis. Wood Sci Technol 51(4):873–885. https://doi.org/10.1007/s00226-017-0916-7

    CAS  Article  Google Scholar 

  34. Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: wood machining—micromechanics and fracture. Holzforschung. https://doi.org/10.1515/HF.2009.011

    Article  Google Scholar 

  35. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    CAS  Article  Google Scholar 

  36. Wang H, Liu Z, Zheng X, Pan X, Hui L, Li J, Zhang H (2020) Assessment on temperature-pressure severally controlled explosion pretreatment of poplar. Carbohyd Polym 230:115622. https://doi.org/10.1016/j.carbpol.2019.115622

    CAS  Article  Google Scholar 

  37. Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389. https://doi.org/10.1002/bit.23330

    CAS  Article  PubMed  Google Scholar 

  38. Wei W, Wu S (2017) Enhanced enzymatic hydrolysis of eucalyptus by synergy of zinc chloride hydrate pretreatment and bovine serum albumin. Bioresource Technol 245:289–295. https://doi.org/10.1016/j.biortech.2017.08.133

    CAS  Article  Google Scholar 

  39. Weiss ND, Felby C, Thygesen LG (2018) Water retention value predicts biomass recalcitrance for pretreated lignocellulosic materials across feedstocks and pretreatment methods. Cellulose 25(6):3423–3434. https://doi.org/10.1007/s10570-018-1798-z

    CAS  Article  Google Scholar 

  40. Yoo CG, Yang Y, Pu Y, Meng X, Muchero W, Yee KL, Thompson OA, Rodriguez M, Bali G, Engle NL, Lindquist E, Singan V, Schmutz J, DiFazio SP, Tschaplinski TJ, Tuskan GA, Chen J, Davison B, Ragauskas AJ (2017) Insights of biomass recalcitrance in natural Populus trichocarpa variants for biomass conversion. Green Chem 19(22):5467–5478. https://doi.org/10.1039/C7GC02219K

    CAS  Article  Google Scholar 

  41. Zhu W, Houtman CJ, Zhu JY, Gleisner R, Chen KF (2012) Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF). Process Biochem 47(5):785–791. https://doi.org/10.1016/j.procbio.2012.02.012

    CAS  Article  Google Scholar 

  42. Zoghlami A, Paës G (2019) Lignocellulosic Biomass: understanding recalcitrance and predicting hydrolysis. Front Chem. https://doi.org/10.3389/fchem.2019.00874

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Guangdong Province [grant number 2021A1515011012]; National Natural Science Foundation of China [grant number 31470607]; Foundation of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences [grant number GZKF202033], China.

Author information

Affiliations

Authors

Contributions

WM contributed to conceptualization, writing—original draft, investigation, data curation, methodology, writing—review and editing, and BL contributed to supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Bo Li.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6898 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mo, W., Li, B. Initial characteristics of the dried poplar fiber as an accessibility indicator for its enzymatic digestibility in the whole hydrolysis process. Wood Sci Technol 55, 1337–1357 (2021). https://doi.org/10.1007/s00226-021-01318-1

Download citation