Skip to main content

Improving physical properties of wood–polymer composites by building stable interface structure between swelled cell walls and hydrophobic polymer

Abstract

Wood–polymer composites (WPC) are commonly prepared by the impregnation and polymerization of active monomers in wood matrix. Due to the inferior interfacial compatibility between wood matrix and hydrophobic polymer interface, the treatment method could not significantly improve the dimensional stability of wood and make full use of the properties of polymer. In this study, a two-step approach was proposed to overcome this problem. The interface bonding between hydrophobic polymer and wood matrix was significantly improved by the formation of covalent bonds. The anti-swelling efficiency (65%), modulus of rupture (120.1 MPa), modulus of elasticity (10.9 GPa) and compressive strength (103.6 MPa) of the wood–polystyrene composites were superior to the wood treated with styrene alone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig.6

References

  1. Brown NR, Frazier CE (2005) Synthesis of labeled acrylamide and N-methylolacrylamide (NMA): 15N-acrylamide, 13C-NMA, 15N-NMA, and 13C,15N-NMA. J Label Compd Radiopharm 48:1031–1039. https://doi.org/10.1002/jlcr.1015

    CAS  Article  Google Scholar 

  2. Cabane E, Keplinger T, Merk V, Hass P, Burgert I (2014) Renewable and functional wood materials by grafting polymerization within cell walls. Chemsuschem 7:1020–1025. https://doi.org/10.1002/cssc.201301107

    CAS  Article  PubMed  Google Scholar 

  3. Chang HT, Chang ST (2002) Moisture excluding efficiency and dimensional stability of wood improved by acylation. Biores Technol 85:201–204. https://doi.org/10.1016/S0960-8524(02)00085-8

    CAS  Article  Google Scholar 

  4. Che W, Xiao Z, Han G, Zheng Z, Xie Y (2018) Radiata pine wood treatment with a dispersion of aqueous styrene/acrylic acid copolymer. Holzforschung 72:387–396. https://doi.org/10.1515/hf-2017-0142

    CAS  Article  Google Scholar 

  5. Chen GC (1994) Fungal decay resistance of wood reacted with chlorosulfonyl isocyanate or epichlorohydrin. Holzforschung 48:181–185. https://doi.org/10.1515/hfsg.1994.48.3.181

    CAS  Article  Google Scholar 

  6. Cherry R, Manalo A, Karunasena W, Stringer G (2019) Out-of-grade sawn pine: a state-of-the-art review on challenges and new opportunities in cross laminated timber (CLT). Constr Build Mater 211:858–868. https://doi.org/10.1016/j.conbuildmat.2019.03.293

    Article  Google Scholar 

  7. Devi RR, Ali I, Maji TK (2003) Chemical modification of rubber wood with styrene in combination with a crosslinker: Effect on dimensional stability and strength property. Biores Technol 88:185–188. https://doi.org/10.1016/S0960-8524(03)00003-8

    CAS  Article  Google Scholar 

  8. Dong X, Zhuo X, Wei J, Zhang G, Li Y (2017) Wood-Based nanocomposite derived by in situ formation of organic-inorganic hybrid polymer within wood via a sol-gel method. ACS Appl Mater Interfaces 9:9070–9078. https://doi.org/10.1021/acsami.7b01174

    CAS  Article  PubMed  Google Scholar 

  9. Dong Y, Zhang W, Hughes MK et al (2019) Various polymeric monomers derived from renewable rosin for the modification of fast-growing poplar wood. Compos B Eng 174:106902. https://doi.org/10.1016/j.compositesb.2019.106902

    CAS  Article  Google Scholar 

  10. Dong Y, Wang K, Li J, Zhang S, Shi SQ (2020a) Environmentally benign wood modifications: a review. ACS Sustain Chem Eng 8:3532–3540. https://doi.org/10.1021/acssuschemeng.0c00342

    CAS  Article  Google Scholar 

  11. Dong Y, Altgen M, Mäkelä M et al (2020b) Improvement of interfacial interaction in impregnated wood via grafting methyl methacrylate onto wood cell walls. Holzforschung. https://doi.org/10.1515/hf-2019-0144

    Article  Google Scholar 

  12. Ermeydan MA, Cabane E, Masic A, Koetz J, Burgert I (2012) Flavonoid insertion into cell walls improves wood properties. ACS Appl Mater Interfaces 4:5782–5789. https://doi.org/10.1021/am301266k

    CAS  Article  PubMed  Google Scholar 

  13. Ermeydan MA, Cabane E, Gierlinger N, Koetz J, Burgert I (2014a) Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv 4:12981–12988. https://doi.org/10.1039/c4ra00741g

    CAS  Article  Google Scholar 

  14. Ermeydan MA, Cabane E, Hass P, Koetz J, Burgert I (2014b) Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(ε-caprolactone) grafting into the cell walls. Green Chem 16:3313–3321. https://doi.org/10.1039/c4gc00194j

    CAS  Article  Google Scholar 

  15. Gabrielli CP, Kamke FA (2010) Phenol-formaldehyde impregnation of densified wood for improved dimensional stability. Wood Sci Technol 44:95–104. https://doi.org/10.1007/s00226-009-0253-6

    CAS  Article  Google Scholar 

  16. Gardon JL (1961) A quantitative study of crosslinking cotton with N-methylol acrylamide. J Appl Polym Sci 5:734–751. https://doi.org/10.1002/app.1961.070051816

    CAS  Article  Google Scholar 

  17. Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7:1694–1708. https://doi.org/10.1038/nprot.2012.092

    CAS  Article  PubMed  Google Scholar 

  18. Han X, Wang Z, Zhang Q, Pu J (2020) An effective technique for constructing wood composite with superior dimensional stability. Holzforschung 74:435–443. https://doi.org/10.1515/hf-2019-0176

    CAS  Article  Google Scholar 

  19. Hemström K, Mahapatra K, Gustavsson L (2011) Perceptions, attitudes and interest of Swedish architects towards the use of wood frames in multi-storey buildings. Resour Conserv Recycl 55:1013–1021. https://doi.org/10.1016/j.resconrec.2011.05.012

    Article  Google Scholar 

  20. Hill CAS (2006) Wood Modification: Chemical Thermal and Other Processes. Wiley, Chichester, UK

  21. Hill CAS, Jones D (1999) Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung 53:267–271. https://doi.org/10.1515/HF.1999.045

    CAS  Article  Google Scholar 

  22. Hill DJT, O’Donnell JH, Pomery PJ, Whittaker MR (1995) A high resolution NMR investigation into the microstructure of HEMA and EEMA copolymers. Polym Gels Networks 3:85–97. https://doi.org/10.1016/0966-7822(94)00024-2

    CAS  Article  Google Scholar 

  23. Huang Y, Li G, Chu F (2019) In situ polymerization of 2-hydroxyethyl methacrylate (HEMA) and 3-(methacryloxy)propyltrimethoxysilane (MAPTES) in poplar cell wall to enhance its dimensional stability. Holzforschung 73:469–474. https://doi.org/10.1515/hf-2018-0139

    CAS  Article  Google Scholar 

  24. Islam MS, Hamdan S, Jusoh I, Rahman MdR, Talib ZA (2011) Dimensional stability and dynamic Youngs modulus of tropical light hardwood chemically treated with methyl methacrylate in combination with hexamethylene diisocyanate cross-linker. Ind Eng Chem Res 50:3900–3906. https://doi.org/10.1021/ie1021859

    CAS  Article  Google Scholar 

  25. Jeremic D, Cooper P, Brodersen P (2007) Penetration of poly(ethylene glycol) into wood cell walls of red pine. Holzforschung 61:272–278. https://doi.org/10.1515/HF.2007.068

    CAS  Article  Google Scholar 

  26. Kamel M, Amin SA, Kharaldy EA (1976) Creation of reactive centres on cotton. VII 17:2725–2738. https://doi.org/10.1177/004051757504500515

    Article  Google Scholar 

  27. Keplinger T, Cabane E, Chanana M, Hass P, Merk V, Gierlinger N, Burgert I (2015) A versatile strategy for grafting polymers to wood cell walls. Acta Biomater 11:256–263. https://doi.org/10.1016/j.actbio.2014.09.016

    CAS  Article  PubMed  Google Scholar 

  28. Kurt R, Tomak ED (2019) The effect of DMDHEU modification on physical and biological properties of parallel strand lumbers. Constr Build Mater 195:497–504. https://doi.org/10.1016/j.conbuildmat.2018.11.064

    CAS  Article  Google Scholar 

  29. Li Y, Dong X, Lu Z, Jia WD, Liu YX (2013a) Effect of polymer in situ synthesized from methyl methacrylate and styrene on the morphology, thermal behavior, and durability of wood. J Appl Polym Sci 128:13–20. https://doi.org/10.1002/app.38099

    CAS  Article  Google Scholar 

  30. Li Y, Liu Z, Dong X, Fu Y, Liu Y (2013b) Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. Int Biodeterior Biodegradation 84:401–406. https://doi.org/10.1016/j.ibiod.2012.03.013

    CAS  Article  Google Scholar 

  31. Li W, Wang H, Ren D, Yu YS, Yu Y (2015) Wood modification with furfuryl alcohol catalysed by a new composite acidic catalyst. Wood Sci Technol 49:845–856. https://doi.org/10.1007/s00226-015-0721-0

    CAS  Article  Google Scholar 

  32. Liu W, Xie T, Qiu R, Fan M (2015) N-methylol acrylamide grafting bamboo fibers and their composites. Compos Sci Technol 117:100–106. https://doi.org/10.1016/j.compscitech.2015.06.005

    CAS  Article  Google Scholar 

  33. Olaniran SO, Michen B, Mora Mendez DF et al (2019) Mechanical behaviour of chemically modified Norway spruce (Picea abies L. Karst.): experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrene. Wood Sci Technol 53:425–445. https://doi.org/10.1007/s00226-019-01080-5

    CAS  Article  Google Scholar 

  34. Qiu H, Yang S, Han Y et al (2018) Improvement of the performance of plantation wood by grafting water-soluble vinyl monomers onto cell walls. ACS Sustain Chem Eng 6:14450–14459. https://doi.org/10.1021/acssuschemeng.8b03112

    CAS  Article  Google Scholar 

  35. Sathre R, Gustavsson L (2006) Energy and carbon balances of wood cascade chains. Resour Conserv Recycl 47:332–355. https://doi.org/10.1016/j.resconrec.2005.12.008

    Article  Google Scholar 

  36. Sun W, Shen H, Cao J (2016) Modification of wood by glutaraldehyde and poly (vinyl alcohol). Mater Des 96:392–400. https://doi.org/10.1016/j.matdes.2016.02.044

    CAS  Article  Google Scholar 

  37. Thybring EE, Piqueras S, Tarmian A, Burgert I (2020) Water accessibility to hydroxyls confined in solid wood cell walls. Cellulose 27:5617–5627. https://doi.org/10.1007/s10570-020-03182-x

    CAS  Article  Google Scholar 

  38. Wang K, Dong Y, Yan Y, Zhang S, Li J (2018) Improving dimensional stability and durability of wood polymer composites by grafting polystyrene onto wood cell walls. Polym Compos 39:119–125. https://doi.org/10.1002/pc.23912

    CAS  Article  Google Scholar 

  39. Xie Y, Fu Q, Wang Q, Xiao Z, Militz H (2013) Effects of chemical modification on the mechanical properties of wood. Eur J Wood Prod 71:401–416. https://doi.org/10.1007/s00107-013-0693-4

    CAS  Article  Google Scholar 

  40. Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621. https://doi.org/10.1007/s10570-013-9869-7

    CAS  Article  Google Scholar 

  41. Yang Z, Cao L, Li J, Lin J, Wang J (2018) Facile synthesis of Cu-BDC/Poly(N-methylol acrylamide) HIPE monoliths via CO2-in-water emulsion stabilized by metal-organic framework. Polymer 153:17–23. https://doi.org/10.1016/j.polymer.2018.07.085

    CAS  Article  Google Scholar 

  42. Yang T, Cao J, Ma E (2019a) How does delignification influence the furfurylation of wood? Ind Crops Prod 135:91–98. https://doi.org/10.1016/j.indcrop.2019.04.019

    CAS  Article  Google Scholar 

  43. Yuan J, Hu Y, Li L, Cheng F (2013) The mechanical strength change of wood modified with DMDHEU. BioResources 8(1):1076–1088. https://doi.org/10.15376/biores.8.1.1076-1088

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31890772).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheng Yang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 239 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Shen, X., Fu, F. et al. Improving physical properties of wood–polymer composites by building stable interface structure between swelled cell walls and hydrophobic polymer. Wood Sci Technol 55, 1401–1417 (2021). https://doi.org/10.1007/s00226-021-01317-2

Download citation