Skip to main content

TiO2-carbonized medium-density fiberboard for the photodegradation of methylene blue

Abstract

TiO2-carbonized medium-density fiberboard (TiO2-cMDF), prepared by carbonization of MDF treated with 50% (v/v) titanium tetraisopropoxide (Ti-tip) in isopropyl alcohol (IPA) as a precursor, was investigated for adsorption and photodegradation in aqueous methylene blue (MB) solution under UV-C (254 nm) irradiation. After full adsorption of MB, four successive cycles of photodegradation were conducted. After the second cycle, the TiO2-cMDF was rinsed with water, dried, and subjected to photodegradation again. For every photodegradation cycle, the TiO2-cMDF practically removed MB. The photodegradation results of the second (unrinsed) and third (rinsed) cycle were similar, however, the result of the fourth (rinsed) cycle was lower than the third cycle. The rate constant of adsorption was 3.3 × 10–3/h and followed pseudo-first-order kinetics. The rate constant of photodegradation decreased from 11.0 × 10–3/h (first cycle) to 5.9 × 10–3/h (fourth cycle) and likewise followed pseudo-first-order kinetics. A reduction in Ti content on the surface of TiO2-cMDF was observed after photodegradation based on scanning electron microscope-energy dispersive X-ray spectrometer (SEM–EDS) analysis; nonetheless, photodegradation of MB was still accomplished. Although TiO2-cMDF in aqueous system exhibited slow photodegradation, it is due to the limited number of TiO2-cMDF slabs. The number of slabs must be increased to improve the photocatalytic performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Alhaji MH, Sanaullah K, Khan A, Hamza A, Muhammad A, Ishola MS, Rigit ARH, Bhawani SA (2017) Recent developments in immobilizing titanium dioxide on supports for degradation of organic pollutants in wastewater- A review. Int J Environ Sci Technol 14(9):2039–2052

    CAS  Article  Google Scholar 

  2. Cai Z, Ross RJ (2010) Mechanical properties of wood-based composite materials GTR-190. Wood handbook wood as an engineering material Chapter 12. USDA USFS FPL, Madison WI, pp 12–1

    Google Scholar 

  3. Chen WT, Chan A, Jovic V, Sun-Waterhouse D, Murai K, Idriss H, Waterhouse GIN (2015) Effect of TiO2 crystallite size, TiO2 polymorph and test conditions on the photo-oxidation rate of aqueous methylene blue. Top Catal 58:85–102

    CAS  Article  Google Scholar 

  4. Chu T, Chuong PV, Tuong VM (2014) Wettability of wood pressure-treated with TiO2 gel under hydrothermal conditions. BioResources 9(2):2396–2404

    Article  Google Scholar 

  5. Doi M, Saka S, Miyafuji H, Goring DAI (2000) Development of carbonized TiO2-woody composites for environmental cleaning. Mater Sci Res Int 6(1):15–21

    CAS  Google Scholar 

  6. Giampiccolo A, Ansell MP, Tobaldi DM, Ball RJ (2016) Synthesis of Co-TiO2 nanostructured photocatalytic coatings for MDF substrates. Green Mater 4(4):140–149

    Article  Google Scholar 

  7. He Y, Li H, Guo X, Zheng R (2019) Bleached wood supports for floatable, recyclable, and efficient three dimensional photocatalyst. Catalysts 9(2):115

    Article  Google Scholar 

  8. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31(2):145–157

    CAS  Article  Google Scholar 

  9. Jnido G, Ohms G, Viöl W (2019) Deposition of TiO2 thin films on wood substrate by an air atmospheric pressure plasma jet. Coatings 9:441

    CAS  Article  Google Scholar 

  10. Kagaya S, Shimizu K, Arai R, Hasegawa K (1999) Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminum chloride. Water Res 33(7):1753–1755

    CAS  Article  Google Scholar 

  11. Kercher AK, Nagle DC (2002) Evaluation of carbonized medium-density fiberboard for electrical applications. Carbon 40:1321–1330

    CAS  Article  Google Scholar 

  12. Kercher AK, Nagle DC (2003) Monolithic activated carbon sheets from carbonized medium-density fiberboard. Carbon 41:3–13

    CAS  Article  Google Scholar 

  13. Kumar M, Gupta RC, Sharma T (1993) X-ray diffraction studies of acacia and eucalyptus wood chars. J Mater Sci 28:805–810

    CAS  Article  Google Scholar 

  14. Lakshmi S, Renganathan R, Fujita S (1995) Study on TiO2-mediated photocatalytic degradation of methylene blue. J Photochem Photobio A Chem 88:163–167

    CAS  Article  Google Scholar 

  15. Lee OK, Choi JW, Jo TS, Paik KH (2007) Adsorption of formaldehyde by wood charcoal-based building materials. Mokchae Gonghak 35(3):61–69

    Google Scholar 

  16. Lee M, Park SB, Mun SP (2019a) One-step preparation of TiO2-carbonized medium density fiberboard for volatile organic compound degradation. BioResources 14(3):5533–5543

    CAS  Google Scholar 

  17. Lee M, Park SB, Mun SP (2019b) Synthesis of TiO2 via modified sol-gel method and its use in carbonized medium density fiberboard for toluene decomposition. BioResources 14(3):6516–6528

    CAS  Google Scholar 

  18. Liu Y, Zhu X, Yaun D, Wang W, Gao L (2020) Preparation and characterization of TiO2 based on wood templates. Sci Rep 10:12444

    CAS  Article  Google Scholar 

  19. Matthews RW (1989) Photocatalytic oxidation and adsorption of methylene blue on thin films of near-ultraviolet-illuminated TiO2. J Chem Soc, Faraday Trans 1 85(6):1291–1302

    CAS  Article  Google Scholar 

  20. Mills A (2012) An overview of the methylene blue ISO test for assessing the activities of photocatalytic films. Appl Catal B 128:144–149

    CAS  Article  Google Scholar 

  21. Mills A, Wang J (1999) Photobleaching of methylene blue sensitized by TiO2: an ambiguous system? J Photochem Photobio A 127(1–3):123–134

    CAS  Article  Google Scholar 

  22. Mun SP, Park SB (2011) Preparation of the functionality enhanced carbonized medium density fiberboard by pretreatment of photocatalytic precursor, titanium tetraisopropoxide. Abstracts of the Forest Products Society, 61st International Convention, Portland, p 127

  23. Nasr M, Eid C, Habchi R, Miele P, Bechelany M (2018) Recent progress on titanium dioxide nanomaterials for photocatalytic applications. Chemsuschem 11:3023–3047

    CAS  Article  Google Scholar 

  24. Nishimiya K, Hata T, Imamura Y, Ishihara S (1998) Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. J Wood Sci 44:56–61

    CAS  Article  Google Scholar 

  25. Nunes CA, Guerreiro MC (2011) Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Quim Nova 34(3):472–476

    CAS  Article  Google Scholar 

  26. Park SB, Lee SM, Park JY, Lee SH (2009) Manufacture of crack-free carbonized board from fiberboard. Mokchae Konghak 37(4):293–299

    Google Scholar 

  27. Pori P, Vilčnik A, Petrič M, Škapin AS, Mihelčič M, Vuk AS, Novak U, Orel B (2016) Structural studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile particles from TiCl4 aqueous solutions of spruce (Picea abies) wood. Appl Surf Sci 375:125–138

    Article  Google Scholar 

  28. Rassam G, Abdi Y, Abdi A (2012) Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. J Exp Nanosci 7(4):468–476

    CAS  Article  Google Scholar 

  29. Silvestri S, Stefanello N, Sulkovski AA, Foletto EL (2019) Preparation of TiO2-supported on MDF biochar for simultaneous removal of methylene blue by adsorption and photocatalysis. J Chem Technol Biotechnol 95(10):2723–2729

    Google Scholar 

  30. Singh K, Singh RS, Rai BN, Upadhyay SN (2010) Biofiltration of toluene using wood charcoal as the biofilter media. Bioresour Technol 101(11):3947–3951

    CAS  Article  Google Scholar 

  31. Stark NM, Cai Z, Carll C (2010) Wood-based composite materials panel products glued-laminated timber, structural composite lumber, and wood-nonwood composite materials. GTR-190. Wood handbook wood as an engineering material Chapter 11. USDA USFS FPL, Madison WI, pp 11–12

    Google Scholar 

  32. Sun Q, Lu Y, Tu J, Yang D, Cao J, Li J (2013) Bulky macroporous TiO2 photocatalyst with cellular structure via facile wood-template method. Int J Photoenergy. https://doi.org/10.1155/2013/649540

    Article  Google Scholar 

  33. Xu C, Rangaiah GP, Zhao XS (2014) Photocatalytic degradation of methylene blue by titanium dioxide: Experimental and modeling study. Ind Eng Chem Res 53:14641–14649

    CAS  Article  Google Scholar 

  34. Yao J, Wang C (2010) Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation. Int J Photoenergy. https://doi.org/10.1155/2010/643182

    Article  Google Scholar 

  35. Yogi C, Kojima K, Wada N, Tokumoto H, Takai T, Mizoguchi T, Tamiaki H (2008) Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films 516(17):5881–5884

    CAS  Article  Google Scholar 

  36. Zanatta P, Gallio E, Ribes DD, Lazarotto M, Gatto DA, Moreira ML (2017) The use of microwave system to deposit TiO2 on wood surface to improve water repellency. Amaz J Plant Resear 1:39–44

    Google Scholar 

  37. Zhang T, Oyama T, Aoshima A, Hidaka H, Zhao J, Serpone N (2001) Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J Photochem Photobio A 140(2):163–172

    CAS  Article  Google Scholar 

  38. Zhang X, Wu F, Wu XW, Chen P, Deng N (2008) Photodegradation of acetaminophen in TiO2 suspended solution. J Hazard Mater 157(2–3):300–307

    CAS  Article  Google Scholar 

  39. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile, and brookite TiO2. Phys Chem Chem Phys 16(38):20382–20386

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jung Tak Bae (College of Engineering Affiliated Facility, JBNU) for machining the stainless-steel frame and Kim Yu Jin (Wood Processing Support Center, JBNU) for precisely cutting the TiO2-cMDF slabs.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung Phil Mun.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pe, J.A., Mun, S.P. & Lee, M. TiO2-carbonized medium-density fiberboard for the photodegradation of methylene blue. Wood Sci Technol 55, 1109–1122 (2021). https://doi.org/10.1007/s00226-021-01308-3

Download citation