Skip to main content

Structural characterization and evaluation of the antioxidant activity of DES-Lignin isolated from Cunninghamia lanceolata

Abstract

As a simple and effective biorefinery method, deep eutectic solvent (DESs) treatment was proposed to isolate lignin from lignocellulose. In this study, choline chloride/lactic acid (ChCl/Lac) was applied to extract high-purity and antioxidative lignin. Under the optimized conditions (120 °C for 12 h), the lignin profiling indicated that the recovered lignin had a high purity (94.18%), low molecular weight (Mw 1967 g/mol), and excellent thermal stability as compared with milled wood lignin. The lignin samples were characterized by using Fourier transform infrared spectrometry and nuclear magnetic resonance (NMR) spectra. In addition, the NMR spectra indicated the functional groups of the lignin extracted via DESs were less damaged and the backbone structure was not significantly modified. To further determine the potential application of DES-Lignin, the antioxidant activity was evaluated by radical scavenging ability. The IC50 values of a treatment time of about 12 h was 0.174. As expected, DES-Lignin showed obvious advantage in oxidation resistance. In short, the proposed process was considered as a promising biorefinery strategy for lignin first production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147. https://doi.org/10.1021/ja048266j

    CAS  Article  PubMed  Google Scholar 

  2. Bauer S, Sorek H, Mitchell VD, Ibáñez AB, Wemmer DE (2012) Characterization of Miscanthus giganteus Lignin isolated by ethanol organosolv process under reflux condition. J Agr Food Chem 60:8203–8212. https://doi.org/10.1021/jf302409d

    CAS  Article  Google Scholar 

  3. Capanema EA, Balakshin MY, Kadla JF (2005) Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agr Food Chem 53:9639–9649. https://doi.org/10.1021/jf0515330

    CAS  Article  Google Scholar 

  4. Del Río JC, Lino AG, Colodette JL, Lima CF, Gutiérrez A, Martínez ÁT, Lu F, Ralph J, Rencoret J (2015) Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenerg 81:322–338. https://doi.org/10.1016/j.biombioe.2015.07.006

    CAS  Article  Google Scholar 

  5. Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins natural antioxidants. Bioresour Technol 95:309–317. https://doi.org/10.1016/j.biortech.2004.02.024

    CAS  Article  PubMed  Google Scholar 

  6. Dwivedi P, Alavalapati JRR, Lal P (2009) Cellulosic ethanol production in the United States: conversion technologies, current production status, economics, and emerging developments. Energy Sustain Dev 13:174–182. https://doi.org/10.1016/j.esd.2009.06.003

    CAS  Article  Google Scholar 

  7. Hu G, Cateto C, Pu Y, Samuel R, Ragauskas AJ (2011) Structural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energ Fuel 26:740–745. https://doi.org/10.1021/ef201477p

    CAS  Article  Google Scholar 

  8. Huang F, Singh PM, Ragauskas AJ (2011) Characterization of Milled Wood Lignin (MWL) in loblolly pine stem wood, residue, and bark. J Agr Food Chem 59:12910–12916. https://doi.org/10.1021/jf202701b

    CAS  Article  Google Scholar 

  9. Inkrod C, Raita M, Champreda V, Laosiripojana N (2018) Characteristics of lignin extracted from different lignocellulosic materials via organosolv fractionation. Bioenerg Res 11:277–290. https://doi.org/10.1007/s12155-018-9895-2

    CAS  Article  Google Scholar 

  10. Jiang B, Zhang Y, Guo T, Zhao H, Jin Y (2018) Structural characterization of lignin and lignin-carbohydrate complex (LCC) from ginkgo shells (Ginkgo biloba L) by comprehensive NMR spectroscopy. Polymers 10:736. https://doi.org/10.3390/polym10070736

    CAS  Article  PubMed Central  Google Scholar 

  11. Li M, Sun S, Xu F, Sun R (2012) Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food Chem 134:1392–1398. https://doi.org/10.1016/j.foodchem.2012.03.037

    CAS  Article  PubMed  Google Scholar 

  12. Li T, Lyu G, Liu Y, Lou R, Lucia L, Yang G, Chen J, Saeed H (2017) Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu). Int J Mol Sci 18:2266. https://doi.org/10.3390/ijms18112266

    CAS  Article  PubMed Central  Google Scholar 

  13. Liu C, Si C, Wang G, Jia H, Ma L (2018a) A novel and efficient process for lignin fractionation in biomass-derived glycerol-ethanol solvent system. Ind Crop Prod 111:201–211. https://doi.org/10.1016/j.indcrop.2017.10.005

    CAS  Article  Google Scholar 

  14. Liu C, Wang X, Lin F, Zhang H, Xiao R (2018b) Structural elucidation of industrial bioethanol residual lignin from corn stalk: a potential source of vinyl phenolics. Fuel Process Technol 169:50–57. https://doi.org/10.1016/j.fuproc.2017.09.008

    CAS  Article  Google Scholar 

  15. Liu J, Qi L, Yang G, Xue Y, He M, Lucia LA, Chen J (2020) Enhancement of lignin extraction of poplar by treatment of deep eutectic solvent with low halogen content. Polymers 12:1599. https://doi.org/10.3390/polym12071599

    CAS  Article  PubMed Central  Google Scholar 

  16. Lou R, Ma R, Lin K, Ahamed A, Zhang X (2019) Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles. ACS Sustain Chem Eng 7:10248–10256. https://doi.org/10.1021/acssuschemeng.8b05816

    CAS  Article  Google Scholar 

  17. Lu Q, Zhu M, Zu Y, Liu W, Yang L, Zhang Y, Zhao X, Zhang X, Zhang X, Li W (2012) Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin. Food Chem 135:63–67. https://doi.org/10.1016/j.foodchem.2012.04.070

    CAS  Article  Google Scholar 

  18. Lynam JG, Kumar N, Wong MJ (2017) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresource Technol 238:684–689. https://doi.org/10.1016/j.biortech.2017.04.079

    CAS  Article  Google Scholar 

  19. Manara P, Zabaniotou A, Vanderghem C, Richel A (2014) Lignin extraction from Mediterranean agro-wastes: Impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior. Catal Today 223:25–34. https://doi.org/10.1016/j.cattod.2013.10.065

    CAS  Article  Google Scholar 

  20. Rencoret J, Prinsen P, Gutiérrez A, Martnez ÁT, del Río JC (2015) Isolation and structural characterization of the milled wood lignin, dioxane lignin, and cellulolytic lignin preparations from brewer’s spent grain. J Agr Food Chem 63:603–613. https://doi.org/10.1021/jf505808c

    CAS  Article  Google Scholar 

  21. Salanti A, Zoia L, Orlandi M, Zanini F, Elegir G (2010) Structural characterization and antioxidant activity evaluation of lignins from rice husk. J Agr Food Chem 58:10049–10055. https://doi.org/10.1021/jf102188k

    CAS  Article  Google Scholar 

  22. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure. National renewable laboratory. Anal pro 1617:1–16

    Google Scholar 

  23. Sun S, Li M, Yuan T, Xu F, Sun R (2013) Effect of ionic liquid/organic solvent pretreatment on the enzymatic hydrolysis of corncob for bioethanol production. Part 1: structural characterization of the lignins. Ind Crop Prod 43:570–577. https://doi.org/10.1016/j.indcrop.2012.07.074

    CAS  Article  Google Scholar 

  24. Sun S, Wen J, Ma M, Sun R, Jones GL (2014) Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem. Ind Crop Prod 56:128–136. https://doi.org/10.1016/j.indcrop.2014.02.031

    CAS  Article  Google Scholar 

  25. Sun S, Liu F, Zhang L, Fan X (2018) One-step process based on the order of hydrothermal and alkaline treatment for producing lignin with high yield and antioxidant activity. Ind Crop Prod 119:260–266. https://doi.org/10.1016/j.indcrop.2018.04.030

    CAS  Article  Google Scholar 

  26. Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresource Technol 98:1655–1663. https://doi.org/10.1016/j.biortech.2006.05.042

    CAS  Article  Google Scholar 

  27. Wang Z, Hong S, Wen J, Ma C, Tang L, Jiang H, Chen J, Li S, Shen X, Yuan T (2019) Lewis acid-facilitated deep eutectic solvent (DES) pretreatment for producing high-purity and Antioxidative Lignin. ACS Sustain Chem Eng 8:1050–1057. https://doi.org/10.1039/C8GC03064B

    Article  Google Scholar 

  28. Wang H, Liu Z, Hui L, Ma L, Zheng X, Li J, Zhang Y (2020) Understanding the structural changes of lignin in poplar following steam explosion pretreatment. Holzforschung 74:275–285. https://doi.org/10.1515/hf-2019-0087

    CAS  Article  Google Scholar 

  29. Xu F, Sun J, Sun R, Fowler P, Baird MS (2006) Comparative study of Organosolv lignins from wheat straw. Ind Crop Prod 23:180–193. https://doi.org/10.1016/j.indcrop.2005.05.008

    CAS  Article  Google Scholar 

  30. Xu M, Wang C, Lyu G, Zhong L, Yang L, Wang Z, Qin C, Ji X, Yang G, Chen J, Xu F (2019) Structural characterization and antioxidant activity of milled wood lignin from xylose residue and corncob. Polymers 11:2092. https://doi.org/10.3390/polym11122092

    CAS  Article  PubMed Central  Google Scholar 

  31. Yang M, Zhang X, Cheng G (2019) A two-stage pretreatment using dilute sodium hydroxide solution followed by an ionic liquid at low temperatures: toward construction of lignin-first biomass pretreatment. Bioresour Technol Rep 7:100286. https://doi.org/10.1016/j.biteb.2019.100286

    Article  Google Scholar 

  32. You TT, Mao JZ, Yuan TQ, Wen JL, Xu F (2013) Structural elucidation of the lignins from stems and foliage of Arundo donax Linn. J Agric Food Chem 61:5361–5370. https://doi.org/10.1021/jf401277v

    CAS  Article  PubMed  Google Scholar 

  33. Zikeli F, Ters T, Fackler K, Srebotnik E, Li J (2016) Wheat straw lignin fractionation and characterization as lignin-carbohydrate complexes. Ind Crop Prod 85:309–317. https://doi.org/10.1016/j.indcrop.2016.03.012

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Plan (Grant No.2017YFB0307901).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhong Liu or Lanfeng Hui.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, Z., Ma, L. et al. Structural characterization and evaluation of the antioxidant activity of DES-Lignin isolated from Cunninghamia lanceolata. Wood Sci Technol 55, 1041–1055 (2021). https://doi.org/10.1007/s00226-021-01300-x

Download citation