Skip to main content

Energy storage in carbon materials synthesized from fir bark modified with graphite and zinc chlorine

Abstract

The purpose of this study is to investigate the synthesis process of composite materials based on fir bark for thermochemical transformation and to determine the influence of additives such as zinc chloride, natural graphite of various origins on the structural and electrochemical characteristics of the carbonized products. Modification of fir bark sawdust with amorphous and/or crystalline graphite and zinc chloride allowed for the synthesis of products with a specific surface area of up to 780 m2/g and an apparent specific electrical capacity up to 540 F/g. It was revealed that carbonization of samples containing zinc chloride leads to the formation of porous carbon/zinc oxide composites. The solid residue obtained from the mixture of three components (fir bark, crystalline graphite, and zinc chloride) has the highest apparent specific electrical capacity. It is assumed that the combination of the structures of amorphous, crystalline carbon, and zinc oxide promotes the diffusion of electrolyte and the accumulation of electric charge in carbon composite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Benković ET, Grohar T, Žigon D, Švajger U, Janeš D, Kreft S, Štrukelj B (2014) Chemical composition of the silver fir (Abies alba) bark extract Abigenol and its antioxidant activity. Ind Crops Prod 52:23–28. https://doi.org/10.1016/j.indcrop.2013.10.005

    CAS  Article  Google Scholar 

  2. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249–1259. https://doi.org/10.1039/C3EE22325F

    CAS  Article  Google Scholar 

  3. Guetteche Y, Bordjiba T, Bouguerne B, Nabeti Z, Mahmoudi O, Lemzademi A (2017) Development of composite material based on porous microfibrous carbon and zinc oxide for energy storage application. Int. J. Electrochem. Sci. 12:1874–1884. https://doi.org/https://doi.org/10.20964/2017.03.37

  4. Iakunkov A, Skrypnychuk V, Nordenstro A, Shilayeva EA, Korobov M, Prodana EM, Larssond SH, Talyzin AV (2019) Activated graphene as a material for supercapacitor lectrodes: effects of surface area, pore size distribution and hydrophilicity. Phys Chem Chem Phys 21:17901–17912. https://doi.org/10.1039/c9cp03327k

    CAS  Article  PubMed  Google Scholar 

  5. Johra FT, Lee J-W, Jung W-G (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20:2883–2887. https://doi.org/10.1016/j.jiec.2013.11.022

    CAS  Article  Google Scholar 

  6. Karnana M, Subramania K, Srividhyac PK, Sathish M (2017) Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes. Electrochim Acta 228:586–596

    Article  Google Scholar 

  7. Kashyap S, Mishra S, Behera SK (2014) Aqueous colloidal stability of graphene oxide and chemically converted grapheme. J Nanoparticles. https://doi.org/10.1155/2014/640281

    Article  Google Scholar 

  8. Khazraji AC, Robert S (2013) Self-assembly and intermolecular forces when cellulose and water interact using molecular modeling. J Nanomater. https://doi.org/10.1155/2013/745979

    Article  Google Scholar 

  9. Lia Z, Gadipellia S, Yanga Y, Hea G, Guoa J, Lia J, Lua Y, Howard CA, Brettc DJL, Parkina IP, Lid F, Guoa Z (2019) Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Mater 17:12–21. https://doi.org/10.1016/j.ensm.2018.12.006

    Article  Google Scholar 

  10. Lufrano F, Staiti P (2010) Mesoporous carbon materials as electrodes for electrochemical supercapacitors. Int. J. Electrochem. Sci.. 5:903–916. https://www.researchgate.net/publication/228900080

  11. Ma L, Lib J, Ma X (2019) Improvement of electrochemical properties of activated carbon hollowfibers from liquefied wood by charcoal power. Mater Lett 255–126544. https://doi.org/10.1016/j.matlet.2019.126544

    Article  Google Scholar 

  12. Manoj B, Kunjomana AG (2012) Study of Stacking Structure of Amorphous Carbon by X-Ray Diffraction Technique. Int j Electrochem Sci 7:3127–3134

    CAS  Google Scholar 

  13. Marie M, Mandal S, Manasreh O (2015) An electrochemical glucose sensor based on zinc oxide nanorods. Sensors 15:18714–18723. https://doi.org/10.3390/s150818714

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Marsh H, Rodriguez-Reinoso F (2006) Activated Carbon. Elsevier Ltd.

  15. Mensah-Darkwa K, Zequine C, Kahol PK, Gupta RK (2019) Supercapacitor energy storage device using biowastes: a sustainable approach to green energy. Sustainability 11:1–22. https://doi.org/10.3390/su11020414

    CAS  Article  Google Scholar 

  16. Ostroukhova LA, Fedorova TE, Onuchina NA, Levchuk AA, Babkin VA (2018) Determination of the quantitative content of extractives from wood, roots and bark of trees of coniferous species of Siberia: larch (Larix sibirica L.), pine (Pinus sylvestris L.), fir (Abies sibirica L.), spruce (Picea obovata L.) and cedar ( Pinus sibirica Du Tour.). Chemistry of vegetable raw materials (Russ) 4:185–195. https://doi.org/https://doi.org/10.14258/jcprm.2018044245

  17. Pasztory Z, Mohacsine IR, Gorbacheva G, Borcsok Z (2016) The utilization of tree bark. BioResources 11:7859–7888

    Article  Google Scholar 

  18. Pei S, Wei Q, Huang K, Cheng H-M, Ren W (2018) Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat Commun 9:145. https://doi.org/10.1038/s41467-017-02479-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Peng X, Zhang L, Chen Z, Zhong L, Zhao D, Chi X, Zhao X, Li L, Lu X, Leng K, Liu C, Liu W, Tang W, Loh KP (2019) Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv Mater 31–1900341. https://doi.org/10.1002/adma.201900341

  20. Raghu M (2011) Nanostructured arrays for sensing and energy storage applications. University of Kentucky Doctoral Dissertations

  21. Teng S, Siegel G, Wang W, Tiwariz A (2014) Carbonized wood for supercapacitor electrodes. ECS Solid State Lett 3:M25–M28. https://doi.org/10.1149/2.005405ssl

    CAS  Article  Google Scholar 

  22. Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Berichte 89:118–131

    CAS  Google Scholar 

  23. Tsyganova S, Mazurova E, Bondarenko G, Chesnokov N (2016) Influence of prolonged exposure of wood to water on wood structure and biochar properties. Wood Sci Technol 50:963–972. https://doi.org/10.1007/s00226-016-0831-3

    CAS  Article  Google Scholar 

  24. Tsyganova SI, Mazurova EV, Bondarenko GN, Fitisova OYu, Skvortsova GP (2020) Structural and current-voltage characteristics of carbon materials obtained during carbonization of fir and aspen barks. Biomass Bioenerg 142. https://doi.org/10.1016/j.biombioe.2020.105759

  25. Veeramani V, Sivakumar M, Chen S-M, Madhu R, Alamri HR, Alothman ZA, Hossain MSA, Chen C-K, Yamauchi Y, Miyamotoc N, Wu KC-W (2017) Lignocellulosic biomass-derived, graphene sheetlike porous activated carbon for electrochemical supercapacitor and catechin sensing. RSC Adv 7:45668–45675. https://doi.org/10.1039/c7ra07810b

    CAS  Article  Google Scholar 

  26. Wang H, Yu S, Xu B (2016) Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors. Chem Commun (camb) 20:11512–11515. https://doi.org/10.1039/C6CC05911B

    CAS  Article  Google Scholar 

  27. Xiao X, Han B, Chen G, Wang L, Wang Y (2017) Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Sci Rep 7:40167. https://doi.org/10.1038/srep40167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Xu C, Strømme M (2019) Sustainable porous carbon materials derived from wood-based biopolymers for CO2 capture. Nanomaterials 9:1–13. https://doi.org/10.3390/nano9010103

    CAS  Article  Google Scholar 

  29. Yang H, Ye S, Zhou J, Liang T (2019) Biomass-derived porous carbon materials for supercapacitor. Front Chem 7:274. https://doi.org/10.3389/fchem.2019.00274

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Yu J, Gao L-z, Li X-l, Wu C, Gao L-l, Li C-m (2016) Porous carbons produced by the pyrolysis of green onion leaves and their capacitive behavior. New Carbon Mater 31:475–484. https://doi.org/10.1016/S1872-5805(16)60026-4

    CAS  Article  Google Scholar 

  31. Zhang J, Zhang W (2014) Preparation and characteristics of activated carbon from wood bark and its use for adsorption of Cu (II). Materials Science (medziagotyra) 20:474–478. https://doi.org/10.5755/j01.ms.20.4.6400

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out as part of the state assignment of the Institute of Chemistry and Chemical Technology SB RAS (project 121031500180-8) using the equipment of the Krasnoyarsk Regional Center for Collective Use of the Federal Research Center of the Siberian Branch of the Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. I. Tsyganova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsyganova, S.I., Bondarenko, G.N. & Fetisova, O.Y. Energy storage in carbon materials synthesized from fir bark modified with graphite and zinc chlorine. Wood Sci Technol 55, 1123–1134 (2021). https://doi.org/10.1007/s00226-021-01298-2

Download citation