Skip to main content

The bark of Stryphnodendron rotundifolium as a source of phenolic extracts with antioxidant properties

Abstract

The objective of this study was to evaluate the anatomical and chemical components of the bark of Stryphnodendron rotundifolium, a tree species from the Brazilian Cerrado, aiming to provide information that values its use as a source of polyphenols and natural antioxidants for various industry sectors. Anatomy and bark histochemistry were analyzed, as well as the summative chemical composition (extractive, lignin, suberin, ash and polysaccharide) and quantitative elemental analysis of bark. The bark extracts were quantified for phenolic composition and antioxidant activity. The results indicated that the bark is formed by conducting phloem, nonconducting phloem and rhytidome composed of two or more successive periderms. The average chemical composition of the bark was 50.2% total extractives, 28.2% total lignin, 1.3% suberin, 1.9 ash and 18.4% polysaccharides. The ethanol–water extract had a high content of flavonoids and condensed tannins, with 232.1 and 501.3 mg EC g−1 extract, respectively. The bark extract showed strong antioxidant activity, reaching 89.4% inhibition of DPPH free radicals, superior to the commercial antioxidant BHT, which inhibited 76.4% at the same concentration. These results show that S. rotundifolium bark is a potential natural source of phenolic compounds and antioxidants and can be used for medicinal purposes and to compose various products such as wood adhesives, cosmetics and foams. The extraction of these compounds will represent an important valorization of bark from this species and, therefore, contribute to economic and environmental valorization of the Cerrado.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Al-Ansari M, Al-Humaid LA, Vijayaraghavan P et al (2019) Identification of phytochemical components from Aerva lanata (Linn.) medicinal plants and its in-vitro inhibitory activity against drug resistant microbial pathogens and antioxidant properties. Saudi J Biol Sci 26:1129–1133. https://doi.org/10.1016/j.sjbs.2019.02.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Amini MHM, Rasat MSM, Mohamed M et al (2017) Chemical composition of small diameter wild Acacia mangium species. ARPN J Eng Appl Sci 12:2698–2702

    CAS  Google Scholar 

  3. Angyalossy V, Pace MR, Evert RF et al (2016) IAWA list of microscopic bark features. IAWA J 37:517–615. https://doi.org/10.1163/22941932-20160151

    Article  Google Scholar 

  4. Araujo ES, Mota GS, Lorenço MS et al (2020) Characterisation and valorisation of the bark of Myrcia eximia DC. trees from the Amazon rainforest as a source of phenolic compounds. Holzforschung. https://doi.org/10.1515/hf-2019-0294

    Article  Google Scholar 

  5. Araujo ES, Lorenço MS, Zidanes UL, Sousa TB, Mota GS, Reis VNO, Silva MG, Mori FA (2021) Quantification of the bark Myrcia eximia DC tannins from the Amazon rainforest and its application in the formulation of natural adhesives for wood. J Clean Prod 280:124324. https://doi.org/10.1016/j.jclepro.2020.124324

    CAS  Article  Google Scholar 

  6. Baptista I, Miranda I, Quilhó T et al (2013) Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind Crops Prod 50:166–175. https://doi.org/10.1016/j.indcrop.2013.07.004

    CAS  Article  Google Scholar 

  7. Bello A, Virtanen V, Salminen JP, Leiviskä T (2020) Aminomethylation of spruce tannins and their application as coagulants for water clarification. Sep Purif Technol 242:116765. https://doi.org/10.1016/j.seppur.2020.116765

    CAS  Article  Google Scholar 

  8. Beltrán-Heredia J, Sánchez-Martín J (2009) Removing heavy metals from polluted surface water with a tannin-based flocculant agent. J Hazard Mater 165:1215–1218. https://doi.org/10.1016/j.jhazmat.2008.09.104

    CAS  Article  PubMed  Google Scholar 

  9. Beltrán-Heredia J, Sánchez-Martín J, Frutos-Blanco G (2009) Schinopsis balansae tannin-based flocculant in removing sodium dodecyl benzene sulfonate. Sep Purif Technol 67:295–303. https://doi.org/10.1016/j.seppur.2009.03.039

    CAS  Article  Google Scholar 

  10. Burlacu E, Tanase C, Coman NA, Berta L (2019) A review of bark-extract-mediated green synthesis of metallic nanoparticles and their applications. Molecules 24(23):4354. https://doi.org/10.3390/molecules24234354

    CAS  Article  PubMed Central  Google Scholar 

  11. Carmo JF, Miranda I, Quilhó T et al (2016a) Copaifera langsdorffii bark as a source of chemicals: structural and chemical characterization. J Wood Chem Technol 36:305–317. https://doi.org/10.1080/02773813.2016.1140208

    CAS  Article  Google Scholar 

  12. Carmo JF, Miranda I, Quilhó T et al (2016b) Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon. Wood Sci Technol 50:677–692. https://doi.org/10.1007/s00226-016-0807-3

    CAS  Article  Google Scholar 

  13. Carmo JF, Miranda I, Quilhó T et al (2016c) Bark characterisation of the Brazilian hardwood Goupia glabra in terms of its valorisation. BioResources 11:4794–4807. https://doi.org/10.15376/biores.11.2.4794-4807

    CAS  Article  Google Scholar 

  14. Chamberlain CJ (1932) Methods in plant histology, 5th edn. University of Chicago Press, Chicago

    Google Scholar 

  15. Chen X, Li J, Xi X et al (2020) Condensed tannin-glucose-based NIPU bio-foams of improved fire. Polym Degrad Stab 175:109121. https://doi.org/10.1016/j.polymdegradstab.2020.109121

    CAS  Article  Google Scholar 

  16. Coșarcă S, Moacă E, Tanase C et al (2019) Spruce and beech bark aqueous extracts: source of polyphenols, tannins and antioxidants correlated to in vitro antitumor potential on two different cell lines. Wood Sci Technol 53:313–333. https://doi.org/10.1007/s00226-018-1071-5

    CAS  Article  Google Scholar 

  17. da Costa JGM, Leite GO, Dubois AF et al (2012) Antioxidant effect of Stryphnodendron rotundifolium Martius extracts from Cariri-Ceará State (Brazil): potential involvement in its therapeutic use. Molecules 17:934–950. https://doi.org/10.3390/molecules17010934

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Evert RF (2006) Esau’s plant anatomy: meristems, cells and tissues of the plant body-their structure, function and development, 3rd edn. Wiley, New York

    Book  Google Scholar 

  19. Faris AH, Ibrahim MNM, Rahim AA (2016) Preparation and characterization of green adhesives using modified tannin and hyperbranched poly (amine-ester). Int J Adhes Adhes 71:39–47. https://doi.org/10.1016/j.ijadhadh.2016.08.009

    CAS  Article  Google Scholar 

  20. Feitosa IS, Albuquerque UP, Monteiro JM (2014) Knowledge and extractivism of Stryphnodendron rotundifolium Mart. in a local community of the Brazilian Savanna, Northeastern Brazil. J Ethnobiol Ethnomed 10:64. https://doi.org/10.1186/1746-4269-10-64

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ferreira JPA, Miranda I, Sousa VB, Pereira H (2018) Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS ONE 13:1–18. https://doi.org/10.1371/journal.pone.0197135

    CAS  Article  Google Scholar 

  22. Fradinho DM, Neto CP, Evtuguin D et al (2002) Chemical characterisation of bark and of alkaline bark extracts from maritime pine grown in Portugal. Ind Crops Prod 16:23–32. https://doi.org/10.1016/S0926-6690(02)00004-3

    CAS  Article  Google Scholar 

  23. Franklin GL (1945) Reparation of thin sections of synthetic resins and wood-resins composites, and a new macerating method for wood. Nature 155:51

    Article  Google Scholar 

  24. Gao H, Shupe TF, Eberhardt TL, Hse CY (2007) Antioxidant activity of extracts from the wood and bark of Port Orford cedar. J Wood Sci 53:147–152. https://doi.org/10.1007/s10086-006-0850-z

    CAS  Article  Google Scholar 

  25. Ghahri S, Pizzi A (2018) Improving soy-based adhesives for wood particleboard by tannins addition. Wood Sci Technol 52:261–279. https://doi.org/10.1007/s00226-017-0957-y

    CAS  Article  Google Scholar 

  26. Hubert J, Angelis A, Aligiannis N et al (2016) In vitro dermo-cosmetic evaluation of bark extracts from common temperate trees. Planta Med 82:1351–1358. https://doi.org/10.1055/s-0042-110180

    CAS  Article  PubMed  Google Scholar 

  27. Jansone Z, Muizniece I, Blumberga D (2017) Analysis of wood bark use opportunities. Energy Proc 128:268–274. https://doi.org/10.1016/j.egypro.2017.09.070

    Article  Google Scholar 

  28. Jensen W, Fremer KE, Sierilä P, Wartiowaara V (1963) The chemistry of bark. In: Browning BL (ed) The chemistry of wood. Interscience, Berlin, pp 587–666

    Google Scholar 

  29. Johansen DA (1940) Plant microtechnique. McGraw Hill, New York

    Google Scholar 

  30. Kollmann FFP, Côté Junior WA (1968) Principles of wood science and technology: solid wood. Springer, Berlin

    Book  Google Scholar 

  31. Kraus JE, Arduin M (1997) Basic manual of methods in plant morphology. Editora da Universidade Federal Rural do Rio de Janeiro, Seropédica

    Google Scholar 

  32. Lima AG, Souza VC, Paula-Souza J et al (2018) Stryphnodendron in Flora do Brasil 2020. Rio de Janeiro Botanical Garden. http://reflora.jbrj.gov.br/reflora/floradobrasil/FB83739. Accessed 20 Aug 2018

  33. Miranda I, Gominho J, Mirra I, Pereira H (2012) Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind Crops Prod 36:395–400. https://doi.org/10.1016/j.indcrop.2011.10.035

    CAS  Article  Google Scholar 

  34. Miranda I, Lima L, Quilhó T et al (2016) The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Ind Crops Prod 82:81–87. https://doi.org/10.1016/j.indcrop.2015.12.003

    CAS  Article  Google Scholar 

  35. Mota GS, Sartori CJ, Miranda I et al (2017) Bark anatomy, chemical composition and ethanol–water extract composition of Anadenanthera peregrina and Anadenanthera colubrina. PLoS ONE 12:1–14. https://doi.org/10.1371/journal.pone.0189263

    CAS  Article  Google Scholar 

  36. Nardeli JV, Fugivara CS, Taryba M et al (2019) Progress in organic coatings tannin: a natural corrosion inhibitor for aluminum alloys. Prog Org Coat 135:368–381. https://doi.org/10.1016/j.porgcoat.2019.05.035

    CAS  Article  Google Scholar 

  37. Neiva DM, Araújo S, Gominho J et al (2018) Potential of Eucalyptus globulus industrial bark as a biorefinery feedstock: chemical and fuel characterization. Ind Crops Prod 123:262–270. https://doi.org/10.1016/j.indcrop.2018.06.070

    CAS  Article  Google Scholar 

  38. Neiva DM, Luís Â, Gominho J, Domingues F (2020) Bark residues valorization potential regarding antioxidant and antimicrobial extracts. Wood Sci Technol 54:559–585. https://doi.org/10.1007/s00226-020-01168-3

    CAS  Article  Google Scholar 

  39. Oliveira DR, Brito-Junior FE, Bento EB et al (2011) Antibacterial and modulatory effect of Stryphnodendron rotundifolium. Pharm Biol 49:1265–1270. https://doi.org/10.3109/13880209.2011.589857

    Article  PubMed  Google Scholar 

  40. Oliveira DR, Ferreira Júnior WS, de Bitu V, CN, et al (2014) Ethnopharmacological study of Stryphnodendron rotundifolium in two communities in the semi-arid region of northeastern Brazil. Braz J Pharmacogn 24:124–132. https://doi.org/10.1016/j.bjp.2014.03.003

    Article  Google Scholar 

  41. Oriakhi K, Orumwensodia KO (2021) Combinatorial effect of gallic acid and catechin on some biochemical and pro-inflammatory markers in CCl4-mediated hepatic damage in rats. Phytomed plus 1:100017

    Article  Google Scholar 

  42. Pereira H (1988) Chemical composition and variability of cork from Quercus suber L. Wood Sci Technol 22:211–218. https://doi.org/10.1007/BF00386015

    CAS  Article  Google Scholar 

  43. Pizzi A (1980) Tannin-based adhesives. J Macromol Sci Part C 18:247–315

    Article  Google Scholar 

  44. Pizzi A (2006) Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J Adhes Sci Technol 20:829–846

    CAS  Article  Google Scholar 

  45. Pooja V, Sunita M (2014) Antioxidants and disease prevention. Int J Adv Sci Technol Res 2:903–911. https://doi.org/10.1016/0098-2997(94)90005-1

    Article  Google Scholar 

  46. Quilhó T, Pereira H, Richter HG (1999) Variability of bark structure in plantation-grown Eucalyptus globulus. IAWA J 20:171–180. https://doi.org/10.1163/22941932-90000677

    Article  Google Scholar 

  47. Quilhó T, Pereira H, Richter HG (2000) Within-tree variation in phloem cell dimensions and proportions in Eucalyptus globulus. IAWA J 21:31–40. https://doi.org/10.1163/22941932-90000234

    Article  Google Scholar 

  48. Rahim AA, Rocca E, Steinmetz J, Kassim MJ (2007) Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium. Corros Sci 49:402–417. https://doi.org/10.1016/j.corsci.2006.04.013

    CAS  Article  Google Scholar 

  49. Rodríguez GRV, Moreno HT, Ochoa MAV et al (2018) Gallic acid content and an antioxidant mechanism are responsible for the antiproliferative activity of ‘Ataulfo’ mango peel on LS180 cells. Molecules 23(3):695. https://doi.org/10.3390/moléculas23030695

    Article  Google Scholar 

  50. Rodríguez-Rojo S, Visentin A, Maestri D, Cocero MJ (2012) Assisted extraction of rosemary antioxidants with green solvents. J Food Eng 109:98–103. https://doi.org/10.1016/j.jfoodeng.2011.09.029

    CAS  Article  Google Scholar 

  51. Roth I (1981) Structural patterns of tropical barks: handb. Borntraeger, Berlin

    Google Scholar 

  52. Sánchez-Martín J, Beltrán-Heredia J, Solera-Hernández C (2010) Surface water and wastewater treatment using a new tannin-based coagulant. Pilot Plant Trials J Environ Manag 91:2051–2058. https://doi.org/10.1016/j.jenvman.2010.05.013

    CAS  Article  Google Scholar 

  53. Santos SC, Costa WF, Ribeiro JP et al (2002) Tannin composition of barbatimao species. Fitoterapia 73:292–299

    CAS  Article  Google Scholar 

  54. Sartori CJ, Mota GS, Ferreira J et al (2016) Chemical characterization of the bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries. Holzforschung 70:819–828. https://doi.org/10.1515/hf-2015-0258

    CAS  Article  Google Scholar 

  55. Sass JE (1951) Botanical microtechnique, 2nd edn. Iowa State College Press, Ames

    Google Scholar 

  56. Singleton VL, Rossi JJ (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  57. Sousa TB, Mota GS, Araujo ES, Carréra JC, Silva EP, Souza SG, Lorenço MS, Mori FA (2020) Chemical and structural characterization of Myracrodruon urundeuva barks aiming at their potential use and elaboration of a sustainable management plan. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-01093-2

    Article  Google Scholar 

  58. Souza TM, Severi JA, Silva VYA et al (2007) Bioprospecting antioxidant and antimicrobial activity of Stryphnodendron adstringens (Mart.) Coville bark (Leguminosae-Mimosoidae). Rev Ciencias Farm Basica e Apl 28:221–226

    Google Scholar 

  59. Taira J, Tsuchida E, Uehara M, Ohhama N, Ohmine W, Ogi T (2015) The leaf extract of Mallotus japonicus and its major active constituent, rutin, suppressed on melanin production in murine B16F1 melanoma. Asian Pac J Trop Biomed 5(10):819–823. https://doi.org/10.1016/j.apjtb.2015.05.017

    CAS  Article  Google Scholar 

  60. Tanase C, Coșarcă S, Muntean DL (2019) A Critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 24(6):1182. https://doi.org/10.3390/molecules24061182

    CAS  Article  PubMed Central  Google Scholar 

  61. Teixeira ML (2012) Citrumelo Swingle: chemical characterization, antioxidant and antifungal activity of essential oils from fresh and dried barks. Magistra 24:194–203

    Google Scholar 

  62. Tondi G, Zhao W, Pizzi A et al (2009) Tannin-based rigid foams: a survey of chemical and physical properties. Bioresour Technol 100:5162–5169. https://doi.org/10.1016/j.biortech.2009.05.055

    CAS  Article  PubMed  Google Scholar 

  63. Trochenbrodt M (1990) Survey and discussion of the terminology used in bark anatomy. IAWA Bull 11:141–166

    Article  Google Scholar 

  64. Vandesmet VCS, Felipe CFB, Kerntopf MR et al (2017) The use of herbs against neglected diseases: evaluation of in vitro leishmanicidal and trypanocidal activity of Stryphnodendron rotundifolium Mart. Saudi J Biol Sci 24:1136–1141. https://doi.org/10.1016/j.sjbs.2015.03.001

    Article  PubMed  Google Scholar 

  65. Vázquez G, Fontenla E, Santos J et al (2008) Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind Crops Prod 28:279–285. https://doi.org/10.1016/j.indcrop.2008.03.003

    CAS  Article  Google Scholar 

  66. Vergílio PCB, Marcati CR (2017) Adaptive and diagnostic significance of the bark of Stryphnodendron polyphyllum (Leguminosae) from the Cerrado. Aust J Bot 65:157–171. https://doi.org/10.1071/BT16212

    Article  Google Scholar 

  67. Zhang J, Xi X, Liang J et al (2019) Tannin-based adhesive cross-linked by furfuryl alcohol–glyoxal and epoxy resins. Int J Adhes Adhes 94:47–52. https://doi.org/10.1016/j.ijadhadh.2019.04.012

    CAS  Article  Google Scholar 

  68. Zhang L, Chen J, Wang Y et al (2010) Phenolic extracts from Acacia mangium bark and their antioxidant activities. Molecules 15:3567–3577. https://doi.org/10.3390/molecules15053567

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education [CAPES; Funding Code 001]. The authors thank the National Council for Scientific and Technological Development—CNPq, and the Research Support Foundation of Minas Gerais—FAPEMIG, for providing equipment, and Bahia Ambiental Consultoria Ltda for the help in obtaining the barks.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thaís Brito Sousa.

Ethics declarations

Conflict of interest

On behalf of all authors, Thaís Brito Sousa states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sousa, T.B., da Silva Mota, G., da Silva Araujo, E. et al. The bark of Stryphnodendron rotundifolium as a source of phenolic extracts with antioxidant properties. Wood Sci Technol 55, 1057–1074 (2021). https://doi.org/10.1007/s00226-021-01293-7

Download citation