Skip to main content

Potentials of silicate-based formulations for wood protection and improvement of mechanical properties: A review

Abstract

Silica or silica-precursor systems are attractive for the protection of wood against biotic and abiotic damages and for improvement of the fire resistance. Alkali metal silicate solutions, also known as water glasses, colloidal silica (nanosilica dispersions) and other inorganic–organic hybrids resulting from the sol-gel chemistry of alkoxysilane compounds, are products available for this purpose. These chemicals are increasingly considered to formulate wood modification products or to develop surface coatings. This review article is focused on in-depth treatments of wood through dipping, soaking or vacuum-pressure impregnation methods. The techniques used to convert monomers and low molecular weight silicate species in water glasses into less soluble and leaching-resistant silica particles, such as heat treatment, acid treatment and reactions with multivalent metal cation salts, are discussed. The similarities and differences between the various raw-impregnation materials and the properties of the final products are highlighted. Water glasses after appropriate curing, colloidal silica and tetraalkoxysilane-based formulations all lead to deposition of silica particles (SiO2) at the surface of the cell walls, in lumens and pores. Low molecular weight organosilanes and other organo-modified formulations that are able to penetrate the wood cell walls and react with wood components are good dimensional stabilizers. The treated wood exhibits, in general, increased mechanical properties (strength, hardness) and improved resistance to biodegradation and fire retardancy. The efficiency of the treatments can significantly be enhanced to a level fulfilling the requirements for industrial applications by the addition of biocides, ultraviolet absorbers or antioxidants, fireproofing compounds (boron or phosphorus-based compounds, multivalent metal salts) and hydrophobic alkylalkoxysilanes. Silica acts as a barrier/support to many of these additives preventing them from leaching.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abubakar A, Suberu HA, Bello IM, Abdulkadir R, Daudu OA, Lateef AA (2013) Effect of pH on mycelial growth and sporulation of Aspergillus parasiticus. J Plant Sci 1(4):64–67

    Google Scholar 

  2. Akahane H, Furuno T, Miyajima H, Yoshikawa T, Yamamoto S (2004) Rapid wood silicification in hot spring water: an explanation of silicification of wood during the Earth’s history. Sediment Geol 169(3–4):219–228

    CAS  Google Scholar 

  3. Akhtari M, Nicholas D (2013) Evaluation of particulate zinc and copper as wood preservatives for termite control. Eur J Wood Prod 71:395–396

    CAS  Google Scholar 

  4. Alexander GB, Heston WM, Iler RK (1954) The Solubility of Amorphous Silica in Water. J Phys Chem 58(6):453–455

    CAS  Google Scholar 

  5. Altun S, Ozcifci A, Şenel A, Baysal E, Toker H (2010) Effects of silica gel on leaching resistance and thermal properties of impregnated wood. Wood Res 55(4):101–112

    CAS  Google Scholar 

  6. Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R (2018) Šantek B (2018) Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18:768–778

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Aphane ME, Doucet FJ, Kruger RA, Petrik L, van der Merwe EM (2020) Preparation of sodium silicate solutions and silica nanoparticles from South African Coal Fly Ash. Waste Biomass Valor 11:4403–4417

    CAS  Google Scholar 

  8. ASTM D1413–99 (1999) Wood Preservatives by Laboratory Soil-Block Cultures, ASTM International, West Conshohocken, PA 19428–2959, www.astm.org

  9. ASTM D2863–19 (2019) Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), ASTM International, West Conshohocken, PA, www.astm.org

  10. ASTM D3806 - 19a (2019) Standard Test Method of Small-Scale Evaluation of Fire-Retardant Paints (2-Foot Tunnel Method)

  11. ASTM E1354–02 (2002) Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, ASTM International, West Conshohocken, PA, www.astm.org

  12. Baatti A, Erchiqui F, Bébin P, Godard F, Bussières D (2017) A two-step Sol-Gel method to synthesize a ladder polymethylsilsesquioxane nanoparticles. Adv Powder Technol 28(3):1038–1046

    CAS  Google Scholar 

  13. Ballhaus C, Gee CT, Bockroth C, Greef K, Mansfedldt T, Rhede D (2012) The silicification of trees in volcanish ash-an experimental study. Geochim Cosmochim Acta 84:62–74

    CAS  Google Scholar 

  14. Beall FC, Eickner HW (1970) Thermal degradation of wood components: a review of the literature. U.S.D.A. Forest Service Research Paper FPL 130

  15. Beardmore J, Lopez X, Mujika JI, Exley C (2016) What is the mechanism of formation of hydroxyaluminosilicates? Sci Rep 6:30913

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bergna HE (2006) Colloidal chemistry of silica: An overview. In: Bergna HE, Roberts WO Colloidal Silica, Fundamentals and Applications (pp 9-35). CRC Press Taylor & Francis group: US

  17. Borges CC, Denzin Tonoli GH, Moreira Cruz T, Duarte PJ, Junqueira TA (2018) Nanoparticles-based wood preservatives: the next generation of wood protection? Cerne 24(4):397–407

    Google Scholar 

  18. Borůvka V, Ziedler A, Doubek S (2016) Impact of silicon-based chemicals on selected physical and mechanical properties of wood. Wood Res 61(4):513–524

    Google Scholar 

  19. Brischke C, Alfredsen G (2020) Wood-water relationships and their role for wood susceptibility to fungal decay. Appl Microbiol Biot 104:3781–3795

    CAS  Google Scholar 

  20. Broda M, Dąbek I, Dutkiewicz A, Dutkiewicz M, Popescu C-M, Mazela B, Maciejewski H (2020) Organosilicons of different molecular size and chemical structure as consolidants for waterlogged archaeological wood – a new reversible and retractable method. Sci Rep 10:2188

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown SC (1998) Flame retardants: inorganic oxide and hydroxide systems. In: Pritchard G. (Ed) Plastics Additives. Polymer Science and Technology Series. Springer: Dordrecht

  22. Bücker M, Jaeger C, Pfeifer D, Unger B (2014) Evidence of Si–O–C bonds in cellulosic materials modified by sol–gel-derived silica. Wood Sci Technol 48(5):1033–1047

    Google Scholar 

  23. Burger MJ, Robinson BJ, Pease LF (2016) Sol-Gel-Derived Nanoscale Materials. In Handbook of Nanoparticles 691–714. https://doi.org/10.1007/978-3-319-15338-4_7

  24. Canosa G, Alfieri PV, Giudice CA (2011) Nano lithium silicates as flame-retardant impregnants for Pinus radiata. J Fire Sci 29(5):431–441

    CAS  Google Scholar 

  25. Cha MS, Park KY (2001) Preparation of Sodium Silicate from Clay. J Chem Eng Jpn 34(2):232–235

    CAS  Google Scholar 

  26. Chen GC (2009) Treatment of wood with polysilicic acid derived from sodium silicate for fungal decay protection. Wood Fiber Sci 410:220–228

    Google Scholar 

  27. Chen H, Zhang Y, Zhong T, Wu Z, Zhan X, Ye J (2020) Thermal insulation and hydrophobization of wood impregnated with silica aerogel powder. J Wood Sci 66:81. https://doi.org/10.1186/s10086-020-01927-7

    CAS  Article  Google Scholar 

  28. Chen T, Niu M, Wang X, Wei W, Liu J, Xie Y (2015) Synthesis and characterization of poly-aluminium silicate sulphate (PASS) for ultra-low density fiberboard (ULDF). RCS Adv 5:93187

    CAS  Google Scholar 

  29. Ciriminna R, Fidalgo A, Pandarus V, Beland F, Ilharco LM, Pagliaro M (2013) The sol-gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620

    CAS  PubMed  Google Scholar 

  30. Civardi C, Kaiser J, Hirsch C, Mucchino C, Wichser A, Wick P, Schwarze F (2016) Release of copper amended particles from micronized copper pressure treated wood during mechanical abrasion. J Nanotechnol 14:1–10

    Google Scholar 

  31. Crundwell FK (2017) On the mechanism of the dissolution of quartz and silica in aqueous solutions. ACS Omega 2(3):1116–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Danihelová A, Ružinská E, Spišiak D (2015) The sodium water glass in surface treatment of chordophones. Mater Sci Forum 818:181–184

    Google Scholar 

  33. Danks AE, Hall SR, Schnepp Z (2016) The evolution of sol-gel chemistry as a technique for materials synthesis. Mater Horiz 3:91–112

    CAS  Google Scholar 

  34. De Lucas A, Rodríguez L, Sánchez P, Carmona M, Romero P, Lobato J (2004) Comparative Study of the Solubility of the Crystalline Layered Silicates α-Na2Si2O5 and δ-Na2Si2O5 and the Amorphous Silicate Na2Si2O5. Ind Eng Chem Res 43(6):1472–1477

    Google Scholar 

  35. Dietrich D, Lampke T, Rößler R (2013) A microstructure study on silicified wood from the Permian Petrified Forest of Chemnitz. PalZ (Paläont Z) 87:397–407

    Google Scholar 

  36. Donath S, Militz H, Mai C (2004) Wood modification with alkoxysilanes. Wood Sci Technol 38:555–566

    CAS  Google Scholar 

  37. Donath S, Militz H, Mai C (2006) Creating water-repellent effects on wood by treatment with silanes. Holzforschung 60:40–46

    CAS  Google Scholar 

  38. Donath S, Militz H, Mai C (2007) Weathering of silane treated wood. Eur J Wood Prod 65:35–42

    CAS  Google Scholar 

  39. EN 84 (1997) Wood preservatives - Accelerated ageing of treated wood prior to biological testing - Leaching procedure, European standard

  40. ENV 12037:1996 (1996) Wood preservatives - Field test method for determining the relative protective effectiveness of a wood preservative exposed out of ground contact - Horizontal lap-joint method

  41. Esposito S (2019) “Traditional” Sol-Gel Chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 12:668. https://doi.org/10.3390/ma12040668

    CAS  Article  PubMed Central  Google Scholar 

  42. European Chemicals Agency (2019a) Sodium silicate - Substance Information. https://echa.europa.eu/fr/substance-information/-/substanceinfo/100.036.332 last accessed 2/21/2021

  43. European Chemicals Agency (2019b) Potassium Silicate-Substance Information. https://echa.europa.eu/fr/substance-information/-/substanceinfo/100.140.338 last accessed 21/02/2021

  44. Furuno T, Imamura Y (1998) Combinations of wood and silicate Part 6. Biological resistances of wood-mineral composites using water glass-boron compound system. Wood Sci Technol 32:161–170

    CAS  Google Scholar 

  45. Furuno T, Shimada K, Uehara T, Jodai S (1992) Combinations of wood and silicate II. Wood-mineral composites using water glass and reactants of barium chloride, boric acid, and borax, and their properties. Mokuzai Gakkaishi 38(5):448–457

    CAS  Google Scholar 

  46. Furuno T, Uehara T, Jodai S (1991) Combinations of wood and silicate I. Impregnation by water glass and applications of aluminum sulfate and calcium chloride as reactants. Mokuzai Gakkaishi 37(5):462–472

    CAS  Google Scholar 

  47. Furuno T, Uehara T, Jodai S (1993) Combinations of wood and silicate III. Some properties of wood mineral composites using the water glass-boron compound system. Mokuzai Gakkaishi 39(5):561–570

    CAS  Google Scholar 

  48. Gabelich CJ, Chen WR, Yun TI, Coffey BM (2005) The role of dissolved aluminum in silica chemistry for membrane processes. Desalination 180:307–319

    CAS  Google Scholar 

  49. Garskaite E, Karlsson O, Stankeviciute Z, Kareiva A, Jonesa D, Sandberg D (2019) Surface hardness and flammability of Na2SiO3 and nano-TiO2 reinforced wood composites. RSC Adv 9:27973–27986. https://doi.org/10.1039/c9ra05200c

    CAS  Article  Google Scholar 

  50. Gayer KH, Thompson LC, Zajicek OT (1958) The solubility of aluminum hydroxide in acidic and basic media at 25 °C. Can J Chem 36(9):1268–1271

    CAS  Google Scholar 

  51. Giudice CA, Pereyra AM (2007) Fire resistance of wood impregnated with soluble alkaline silicates. Res Lett Mater Sci. https://doi.org/10.1155/2007/31956

    Article  Google Scholar 

  52. Giudice CA (2010) Pereyra AM (2010) Silica nanoparticles in high silica/alkali molar ratio solutions as fire retardant impregnants for woods. Fire Mater 34:177–187

    CAS  Google Scholar 

  53. Gorrepati EA, Wongthahan P, Raha S, Fogler HS (2010) Silica Precipitation in Acidic Solutions: Mechanism, pH Effect, and Salt Effect. Langmuir 26(13):10467–11047

    CAS  PubMed  Google Scholar 

  54. Götze J, Möckel R, Langhof N, Hengst M, Klinger M (2008) Silicification of wood in the laboratory. Ceram-Silik 52(4):268–277

    Google Scholar 

  55. Hao S, Hu C, Lin X, Gu J, Yun H, Zhang W (2021) Resistance to growth of molds for wood modified with hydrophobic hydrib silica gel containing copper amine complexes. Materials 14:577

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hautamäki S, Altgen M, Altgen D, Larnøy E, Hänninen T, Rautkari L (2020) The effect of diammonium phosphate and sodium silicate on the adhesion and fire properties of birch veneer. Holzforschung 74(4):372–381

    Google Scholar 

  57. Hellberg M, Öhrn A (2012) Environmentally friendly wood treatment process. WO2012/071592 A4

  58. Hicks H (1984) sodium silicate composition. US patent 4(612):050

    Google Scholar 

  59. Hill C, Altgen M, Rautkari L (2021) Thermal modification of wood—a review: chemical changes and hygroscopicity. J Mater Sci 56:6581–6614

    CAS  Google Scholar 

  60. Hung KC, Wu JH (2017) Characteristics and thermal decomposition kinetics of wood-SiO2 composites derived by the sol-gel process. Holzforschung 71:233–240

    CAS  Google Scholar 

  61. Hung K-C, Wu T-L, Wu J-H (2019) Long-term creep behavior prediction of sol-gel derived SiO2- and TiO2-wood composites using the Stepped Isostress Method. Polymers 11:1215

    PubMed Central  Google Scholar 

  62. ISO 4589–1:2017 Plastiques—Plastics— Determination of burning behaviour by oxygen index, International Organization for Standardisation-part1: General requirements

  63. ISO 5660–1:2015 (2015) Reaction-to-fire tests — Heat release, smoke production and mass loss rate — Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement)

  64. Issa AA, Luyt AS (2019) Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review. Polymers 11:537

    PubMed Central  Google Scholar 

  65. Jiang J, Cao J, Wang W (2018) Characteristics of wood-silica composites influenced by the pH value of silica sols. Holzforschung 72(4):311–319

    CAS  Google Scholar 

  66. JIS A 9201 (1991) Qualitative standards and testing methods of wood preservatives. Japanese Industrial Standard. Japan Standards Organization, Tokyo

  67. Kaewamatawong T, Kawamura N, Okajima M, Sawada M, Morita T, Shimada A (2005) Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice. Toxicol Pathol 33(7):745–751

    Google Scholar 

  68. Karami A, Gholam Reza V, Mohammad A, Mehdi F (2008) Preparation and Characterization of Colloidal Silica in Alkaline and Constant Range of pH. Iran J Chem Chem Eng 27(4):65–70

    CAS  Google Scholar 

  69. Kashiwagi T, Gilman JW, Butler KM, Harris RH, Shields JR, Asano A (2000) Flame retardant mechanism of silica gel/silica. Fire Mater 24(6):277–289

    CAS  Google Scholar 

  70. Khananashvili LM, Mukbaniani OV, Zaikov GE (2006) New concepts in polymer science, elementorganic monomers: technology, properties, applications. VSP, Leiden, Boston

    Google Scholar 

  71. Kim Y-R, Lee S-Y, Lee EJ, Park SH, Seong N-W, Seo H-S, Shin S-S, Kim S-J, Meang E-H, Park M-K, Kim M-S, Kim C-S, Kim S-K, Son SW, Seo YR, Kang BH, Han BS, An SSA, Lee B-J, Kim M-K (2014) Toxicity of colloidal silica nanoparticles administered orally for 90 days in rats. Int J Nanomedicine 9(2):67–78

    PubMed  PubMed Central  Google Scholar 

  72. Kim YS, Singh AP (2000) Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA J 21(2):135–155

    Google Scholar 

  73. Kolesar GB, Siddiqui WH, Geil RG, Malczewski RM, Hobbs EJ (1989) Subchronic Inhalation Toxicity of Tetramethoxysilane in Rats. Fund Appl Toxicol 13:285–295

    CAS  Google Scholar 

  74. Kollmann F (1960) Occurrence of exothermic reactions in wood. Holz Roh Werkst 18(6):193–200

    CAS  Google Scholar 

  75. Krauskopf BK (1956) Dissolution and precipitation of silica at low temperatures. Geochim Cosmochim Acta 10(1–2):1–26

    CAS  Google Scholar 

  76. Kutnik M, Suttie E, Brischke C (2017) Standardisation background and systems of evaluation and authorisation for the European market. In: Jones D, Brischke C (eds) Performance of Bio-based Building Materials. Woodhead Publishing, New Delhi, pp 593–610

    Google Scholar 

  77. Lee KP, Kelly DP (1992) The Pulmonary Response and Clearance of Ludox Colloidal Silica after a 4-Week Inhalation Exposure in Rats. Toxicol Sci 19(3):399–410

    CAS  Google Scholar 

  78. Levy JF (1987) The natural history of the degradation of wood. Philos Trans R Soc Lond A 321:423–433

    Google Scholar 

  79. Li P, Zhang Y, Zuo Y, Lu J, Yuan G, Wu Y (2020) Preparation and characterization of sodium silicate impregnated Chinese fir wood with high strength, water resistance, flame retardant and smoke suppression. J Mater Res Technol 9(1):1043–1053

    CAS  Google Scholar 

  80. Lim HM, Lee J, Jeong JH, Oh SG, Lee SH (2010) Comparative study of various preparation methods of colloidal silica. Engineering 2(12):3611

    Google Scholar 

  81. Liu J-N, Shen X-Y, Wu Y, Zhang J, Zhai Y-C (2016) Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology. Int J Miner Metall Mater 23(8):966

    CAS  Google Scholar 

  82. Liu Q, Du H, Lyu W (2021) Physical and mechanical properties of poplar wood modified by Glucose-Urea-Melamine Resin/Sodium Silicate compound. Forests 12(2):127

    Google Scholar 

  83. Liu Q, Chai Y, Ni L, Lyu W (2020) Flame retardant properties and thermal decomposition kinetics of wood treated with boric acid modified silica sol. Materials 13:4478

    PubMed Central  Google Scholar 

  84. Locs J, Berzina-Cimdina L, Zhurinsh A, Loca D (2008) Effective impregnation of SiO2 Sol-Gel solution in pine wood and following Gel localization in free cell volume. Adv Sci Technol 58:72–77

    CAS  Google Scholar 

  85. Lowden LA, Hull TR (2013) Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci Rev 2(4):1–19

    Google Scholar 

  86. Lunevich L (2019) Aqueous Silica and Silica Polymerisation. Desalin-Chall Opportunities 6:1–19

    Google Scholar 

  87. Mahltig B, Swaboda C, Roessler A, Böttcher H (2008) Functionalising wood by nanosol application. J Mater Chem 18(27):3180–3192

    CAS  Google Scholar 

  88. Mai C, Militz H (2004a) Modification of wood with silicon compounds. inorganic silicon compounds and sol-gel systems: a review. Wood Sci Technol 37:339–348

    CAS  Google Scholar 

  89. Mai C, Militz H (2004b) Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds-A review. Wood Sci Technol 37(6):453–461. https://doi.org/10.1007/s00226-004-0225-9

    CAS  Article  Google Scholar 

  90. Mantanis GI (2017) Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioRes 12(2):4478–4489

    CAS  Google Scholar 

  91. Matějka L, Dukh O, Hlavatá D, Meissner B, Brus J (2001) Cyclization and self-organization in polymerization of Trialkoxysilanes. Macromolecules 34(20):6904–6914

    Google Scholar 

  92. Matsunaga H, Kiguchi M, Evans P (2009) Microdistribution of copper carbonate and iron oxide nanoparticles in treated wood. J Nanoparticle Res 11:1087–1098

    CAS  Google Scholar 

  93. Maurits JEA (2014) Silicon production, In Seetharaman S (Ed) Treatise on process Metallurgy, (Vol 3): industrial processes. pp 919–948 https://doi.org/10.1016/B978-0-08-096988-6.00022-5

  94. Mester T, Varela E, Tien M (2004) Wood Degradation by Brown-Rot and White-Rot Fungi. In: Kück U. (eds) Genetics and Biotechnology. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research) (vol 2). Springer, Berlin, Heidelberg

  95. Miyafuji H, Saka S, Yamamoto A (1998) SiO2-P2O5-B2O3 Wood-inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties. Holzforschung 52(4):410–416

    CAS  Google Scholar 

  96. Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91:2967–3010

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mustoe GE (2017) Wood petrifaction: A new view of permineralization and replacement. Geosciences 7(4):119

    Google Scholar 

  98. Nakashima H, Omae K, Sakai T, Yamazaki K, Sakurai H (1994) Acute and subchronic inhalation toxicity of tetraethoxysilane (TEOS) in mice. Arch Toxicol 68:277–283

    CAS  PubMed  Google Scholar 

  99. Nakashima H, Omae K, Takebayashi T, Ishizuka C, Uemura T (1998) Toxicity of silicon compounds in semiconductor industries. J Occup Health 40(4):270–275

    CAS  Google Scholar 

  100. Neyses B, Rautkari L, Yamamoto A, Sandberg D (2017) Pre-treatment with sodium silicate, sodium hydroxide, ionic liquids or methacrylate resin to reduce the set-recovery and increase the hardness of surface-densified Scots pine. iForest 10:857–864

    Google Scholar 

  101. Nguyen TT, Xiao Z, Che W, Trinh HM, Xie Y (2019) Effects of modification with a combination of styrene-acrylic copolymer dispersion and sodium silicate on the mechanical properties of wood. J Wood Sci 65(1):1–11

    CAS  Google Scholar 

  102. Oberst S, Lenz M, Lai JCS, Evans TA (2019) Termites manipulate moisture content of wood to maximize foraging resources. Biol Lett 15(7):20190365

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Östman B, Mikkola E (2006) European classes for the reaction to fire performance of wood products. Holz Roh Werkst 64:327–337

    Google Scholar 

  104. Östman BAL (2006) Flammability of wood products. In: Apte VB (ed) Flammability Testing of Materials Used in Construction, Transport and Mining. CRC Press LLC, US, pp 65–89

    Google Scholar 

  105. Palanti S, Feci E (2013) A wood preservative based on commercial silica nanodispersions and boric acid against fungal decay through laboratory and field tests. Open J For 3(2):57–66

    Google Scholar 

  106. Palanti S, Feci E, Predieri G, Vignali F (2010) Copper anchored to amino-group functionalized silica gel as wood preservative against brown-rot decay. Maderas Cienc Tecnol 12(3):259–266

    CAS  Google Scholar 

  107. Palanti S, Feci E, Predieri G, Vignali F (2012) Copper complexes grafted to amino-functionalized silica gel as wood preservatives against fungal decay: mini-blocks and standard test. BioResources 7(4):5611–5621

    Google Scholar 

  108. Palanti S, Feci E, Predieri G, Vignali F (2012) A wood treatment based on siloxanes and boric acid against fungal decay and coleopter Hylotrupes bajulus. Int Biodeterior Biodegrad 75:49–54

    CAS  Google Scholar 

  109. Palanti S, Predieri G, Vignali F, Feci E, Casoli A, Conti E (2011) Copper complexes grafted to functionalized silica gel as wood preservatives against the brown rot fungus Coniophora puteana. Wood Sci Technol 45:707–718

    CAS  Google Scholar 

  110. Palanti S, Vignali F, Elviri L, Lucchetti C, Mucchino C, Predieri G (2017) Effect of amine functionalization and ageing on copper and boron leaching from wood preservatives grafted to siloxane networks. BioResources 12(3):4943–4957

    CAS  Google Scholar 

  111. Park KY, Kim J-K, Jeong J, Choi YY (1997) Production of Poly(aluminum chloride) and Sodium Silicate from Clay. Ind Eng Chem Res 36(7):2646–2650

    CAS  Google Scholar 

  112. Peng Y, Han Y, Gardner DJ (2010) Sodium silicate coated wood, Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe–Timber Committee (pp. 11–14). Geneva Switzerland

  113. Pereyra AM, Giudice CA (2009) Flame-retardant impregnants for woods based on alkaline silicates. Fire Safety J 44(4):497–503

    CAS  Google Scholar 

  114. Pfeffer A, Dieste A, Mai C, Militz H (2011) Effects of water glass and DMDHEU treatment on the colonisation of wood by Aureobasidium pullulans. Eur J Wood Prod 69:303–309

    CAS  Google Scholar 

  115. Pfeffer A, Mai C, Militz H (2012) Weathering characteristics of wood treated with water glass, siloxane or DMDHEU. Eur J Wood Prod 70:165–176

    CAS  Google Scholar 

  116. Pfeiffer T, Sander SAH, Enke D, Roggendorf H (2019) Hydrothermal dissolution of low-quartz in sodium hydroxide lyes: Kinetics and equilibrium. Chem Ing Tech 91(1–2):92–101

    CAS  Google Scholar 

  117. Plötze M, Niemz P (2011) Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. Eur J Wood Prod 69:49–657

    Google Scholar 

  118. Popescu C-M, Pfriem A (2020) Treatments and modification to improve the reaction to fire of wood and wood based products—An overview. Fire Mater 44:100–111

    CAS  Google Scholar 

  119. PQ Corporation Europe (2004) Sodium and potassium silicates, versatile compounds for your applications, www.pqcorp.com/docs/ last accessed 03–04–2020.

  120. Pries M, Mai C (2013) Treatment of wood with silica sols against attack by wood-decaying fungi and blue stain. Holzforschung 67(6):697–705

    CAS  Google Scholar 

  121. Pries M, Mai C (2013) Fire resistance of wood treated with a cationic silica sol. Eur J Wood Prod 71:237–244

    CAS  Google Scholar 

  122. Qomariyah L, Sasmita FN, Novaldi HR, Widiyastuti W, Winardi S (2018) Preparation of Stable Colloidal Silica with Controlled Size Nano Spheres from Sodium Silicate Solution. 7th Nanoscience and Nanotechnology Symposium (NNS) IOP Publishing IOP Conf. Series: Materials Science and Engineering 395: 012017 https://doi.org/10.1088/1757-899X/395/1/012017

  123. Rafferty TP (2012) Chapter 6: silica minerals. Minerals, Britannica Educational pyblishing-Rosen Educational services

  124. Rahman IA, Radavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size dependent properties, surface modification, and applications in silica polymer nanocomposites-A review. J Nanomater, Article ID 132424

  125. Reinprecht L (2016) Wood deterioration, protection and maintenance, Wiley Blackwell. Wiley, UK

    Google Scholar 

  126. Ro JC, Chung IJ (1989) Sol-gel kinetics of tetraethylorthosilicate (TEOS) In acid catalyst. J Non-Cryst Solids 110:26–32

    CAS  Google Scholar 

  127. Rosenthal M, Bues C-T (2010) Longitudinal penetration of silicon dioxide nanosols in wood of Pinus sylvestris. Eur J Wood Prod 68:363–366

    CAS  Google Scholar 

  128. Saka S, Tanno F (1996) Wood-inorganic composites prepared by the sol-gel process. VI. Effects of a property-enhancer on fire-resistance in SiO2-P2O5 and SiO2-B2O3 wood-inorganic composites. Mokuzai Gakkaishi 42(1):81–86

    CAS  Google Scholar 

  129. Saka S, Ueno T (1997) Several SiO2 wood-inorganic composites and their fire-resisting properties. Wood Sci Technol 31:457–466

    CAS  Google Scholar 

  130. Savenko AV, Savenko VS (2011) Aluminum hydroxide’s solubility and the forms of dissolved aluminum’s occurrence in seawater. Oceanology 51:231–234

    Google Scholar 

  131. Schnebele EK (2021) Silicon. U.S. Geological Survey, Mineral Commodity Summaries, January 2021. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-silicon.pdf (usgs.gov) consulted on 1.3.2021

  132. Schubert U (2015) Chemistry and Fundamentals of the Sol–Gel Process in The Sol–Gel Handbook: Synthesis, Characterization, and Applications, First Edition. Edited by D. Levy and M. Zayat. 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  133. Sigleo AC (1979) Geochemistry of silicified wood and associated sediments, Petrified Forest National Park. Arizona Chem Geol 26:151–163

    CAS  Google Scholar 

  134. Sioo wood protection AB (2021). Made by earth. https://sioox.com/technology/ last accessed 01/03/2021.

  135. Slimak KM, Slimak RA (2007) Process of using sodium silicate to create fire retardant products. US patent 7297411

  136. Slimak KM, Slimak, RA (2004) Process of using sodium silicate to create fire retardant products. US patent 6827984 B2

  137. Slimak RA, Haudenschild CC, Slimak KM (2000) Enhancing the strength, moisture resistance and fire resistance of wood, timber, lumber, similar plant-derived construction and building materials, and other cellulosic materials, US patent 6040057

  138. Son DW, Kang MR, Kim JI, Park S-B (2012) Fire performance of the wood treated with inorganic fire retardants. J Korean Wood Sci & Tech 40(5):335–342

    Google Scholar 

  139. Sonnier R, Viretto A, Dumazert L, Longerey M, Buonomo S, Gallard B, Longuet C, Cavodeau F, Lamy R, Freitag A (2016) Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA). Polym Degrad Stabil 128:228–236

    CAS  Google Scholar 

  140. Spataru CI, Purcar V, Ghiurea M, Radovici C, Stanga G, Donescu D (2013) Effects of the nanoassociation of hexadecyltrimethoxysilane precursors on the sol–gel process. J Sol-Gel Sci Technol 65:344–352

    CAS  Google Scholar 

  141. Talia P, Arneodo J (2018) Lignocellulose Degradation by Termites. In: Khan MA, Ahmad W (eds) Termites and Sustainable Management, Sustainability in Plant and Crop Protection Volume 1-Biology, Social Behaviour and Economic Importance. Springer International Publishing AG, New York City, pp 101–117

    Google Scholar 

  142. Teacă C-A, Roşu D, Bodîrlău R, Roşu L (2013) Structural changes in wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements-A brief review. BioResources 8(1):1478–1507

    Google Scholar 

  143. Temiz A, Terziev N, Jacobsen B, Eikenes M (2006) Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. J Appl Polym Sci 102:4506–4513

    CAS  Google Scholar 

  144. Thougaard L, Hayden JP (2014) Wood preservation method using sodium silicate and sodium bicarbonate, WO 2014/101979 A2.

  145. Trümper S, Rößler R, Götze J (2018) Deciphering Silicification Pathways of Fossil Forests: Case Studies from the Late Paleozoic of Central Europe. Minerals 8:432

    Google Scholar 

  146. Tsai M-S, Wu W-C (2004) Aluminum modified colloidal silica via sodium silicate. Mater Lett 58:1881–1884

    CAS  Google Scholar 

  147. U.S. Food and Drug Administration (2020), HHS: 21 CFR 182.90- Substances migrating to food from paper and paperboard products, Revised as of April 1, 2020, www.accessdata.fda.gov

  148. Unger B, Bücker M, Reinsch S, Hübert T (2013) Chemical aspects of wood modification by sol–gel-derived silica. Wood Sci Technol 47:83–104

    CAS  Google Scholar 

  149. Vattem DA, Maitin V, Richardson CR (2012) Evaluation of antibacterial and toxicological effects of a novel sodium silicate complex. Res J Microbiol 7:191–198

    Google Scholar 

  150. Vignali F, Predieri G, Feci E, Palanti S, Baratto MC, Basosi R, Callone E, Müller K (2011) Interpenetration of wood with NH2R-functionalized silica xerogels anchoring copper(II) for preservation purposes. J Sol-Gel Sci Technol 60:445–456

    CAS  Google Scholar 

  151. Vogelsberger W, Seidel A, Rudakoff G (1992) Solubility of silica gel in water. J Chem Soc, Faraday Trans 88:473–476

    CAS  Google Scholar 

  152. Wang B, Yao W, Stephan D (2019) Preparation of calcium silicate hydrate seeds by means of mechanochemical method and its effect on the early hydration of cement. Adv Mech Eng 11(4):1–7

    Google Scholar 

  153. Wang Q, Li J, Winandy JE (2004) Chemical mechanism of fire retardance of boric acid on wood. Wood Sci Technol 38:375–389

    CAS  Google Scholar 

  154. Warheit DB, Carakostas MC, Kelly DP, Hartsky MA (1999) Four-week inhalation toxicity study with Ludox colloidal silica in rats: Pulmonary cellular responses. Fund Appl Toxicol 16(3):590–601

    Google Scholar 

  155. Weldes HH, Lange KR (1969) Properties of soluble silicates. Ind Eng Chem 61(4):29–44

    CAS  Google Scholar 

  156. White RH (1979) Oxygen index evaluation of fire-retardant-treated wood. Wood Sci 12(2):113–121

    CAS  Google Scholar 

  157. White RH, Dietenberger MA (2004) Cone calorimeter evaluation of wood products, Proceedings of the conference on recent advances in flame retardancy of polymeric materials held in Stamford, CT, USA, 6–9

  158. Woźniak M, Mania P, Roszyk E, Ratajczak I (2021) Bending strength of wood treated with propolis extract and silicon compounds. Materials 14:819

    PubMed  PubMed Central  Google Scholar 

  159. Xu E, Zhang Y, Lin L (2020) Improvement of mechanical, hydrophobicity and thermal properties of chinese fir wood by impregnation of nano silica sol. Polymers 12:1632

    CAS  PubMed Central  Google Scholar 

  160. Yamaguchi H (2002) Low molecular weight silicic acid – inorganic compound complex as wood preservative. Wood Sci Technol 36:399–417

    CAS  Google Scholar 

  161. Yamaguchi H (2003) Silicic acid: boric acid complexes as wood preservatives. Wood Sci Technol 37(3–4):287–297

    CAS  Google Scholar 

  162. Yan L, Zeng F, Chen Z, Chen S, Lei Y (2021) Improvement of wood decay resistance by salicylic acid / silica microcapsule: Effects on the salicylic leaching, microscopic structure and decay resistance. Int Biodeterior Biodegrad 156:105134

    CAS  Google Scholar 

  163. Yokoyama T, Takahashi Y, Yamanaka C, Tarutania T (1989) Effect of aluminium on the polymerization silicic acid in aqueous solution and the deposition of silica. Geothermics 18(1–2):321–326

    CAS  Google Scholar 

  164. Yu L, Cai J, Li H, Lu F, Qin D, Fei B (2017) Effects of boric acid and/or borax treatments on the fire resistance of Bamboo filament. BioResources 12(3):5296–5307

    CAS  Google Scholar 

  165. Zhou Y, Zhang Y, Zuo Y, Wu Y, Yuan G, Li X (2020) Construction of a network structure in Chinese fir wood by Na2SiF6 crosslinked Na2SiO3. J Mater Res Technol 9(6):14190–14199

    CAS  Google Scholar 

  166. Zhu G, Li H, Wang X, Li S, Hou X, Wu W, Tan Q (2016) Synthesis of calcium silicate hydrate in highly alkaline system. J Am Ceram Soc 99(8):2778–2785

    CAS  Google Scholar 

  167. Zulfiqar U, Subhani T, Wilayat Husain S (2016) Synthesis and characterization of silica nanoparticles from clay. J Asian Ceram Soc 4(1):91–96

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Slovenian National Research Agency (ARRS) for financial support (The project “SilWoodCoat” N4-0117, and the research programme “Wood and lignocellulosic composites” P4-0015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arnaud Maxime Cheumani Yona.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yona, A.M.C., Žigon, J., Matjaž, P. et al. Potentials of silicate-based formulations for wood protection and improvement of mechanical properties: A review. Wood Sci Technol 55, 887–918 (2021). https://doi.org/10.1007/s00226-021-01290-w

Download citation