Skip to main content

Wood plastic composites with improved electrical and thermal conductivity

Abstract

Graphene nanoplatelets (GNP) are used to produce wood plastic composites (WPC) with improved electrical and thermal conductivity. The polypropylene/wood/GNP hybrid composites are produced by melt compounding followed by hot pressing. The effect of GNP loadings (5, 10 and 15 wt%) on electrical conductivity, thermal conductivity, tensile properties, and thermal degradation of hybrid WPC containing 20 wt% of wood flour is studied. The effect of fast and slow cooling rates during hot pressing on the surface resistivity of hybrid WPC is evaluated. Scanning electron microscopy of the tensile fracture surface and polished cross-sections of hybrid WPC is analysed. The hybrid WPC containing 20 wt% wood flour and 15 wt% of GNP (PP-W20-G15) is measured to show surface resistivity of 2.05E + 06 Ω/sq and thermal conductivity of 0.61 W/m.K. There is a significant increase in electrical and thermal conductivity of PP-W20-G15 when compared to WPC containing 20 wt% of wood flour (PP-W20). The wood flour helps with the distribution of GNP in PP-W20-G15 by which the surface resistivity is improved when compared to PP filled with 15 wt% GNP. It was found that the surface resistivity of PP-W20-G15 was dependent on the cooling rate used during the hot pressing. There is a considerable decrease in tensile strength and an increase in the tensile modulus of hybrid WPCs compared to PP-W20 and neat polypropylene.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565. https://doi.org/10.1016/j.compscitech.2007.05.044

    CAS  Article  Google Scholar 

  2. Al-Saleh MH, Saadeh WH, Sundararaj U (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60:146–156. https://doi.org/10.1016/j.carbon.2013.04.008

    CAS  Article  Google Scholar 

  3. Batista NL, Helal E, Kurusu RS, Moghimian N, David E, Demarquette NR, Hubert P (2019) Mass-produced graphene—HDPE nanocomposites: thermal, rheological, electrical, and mechanical properties. Polym Eng Sci 59:675–682. https://doi.org/10.1002/pen.24981

    CAS  Article  Google Scholar 

  4. Biron M (2018) Chapter 7 - plastics solutions for practical problems. In: Biron M (ed) Thermoplastics and thermoplastic composites (Third Edition). William Andrew Publishing, New York, pp 883–1038

    Chapter  Google Scholar 

  5. Chodak I, Krupa I (1999) “Percolation effect” and mechanical behavior of carbon black filled polyethylene. J Mater Sci Lett 18:1457–1459. https://doi.org/10.1023/A:1006665527806

    CAS  Article  Google Scholar 

  6. Choi H, Kim MS, Ahn D, Yeo SY, Lee S (2019) Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-42495-1

    CAS  Article  Google Scholar 

  7. Chung KT, Reisner JH, Campbell ER (1983) Charging phenomena in the scanning electron microscopy of conductor-insulator composites: a tool for composite structural analysis. J Appl Phys 54:6099–6112. https://doi.org/10.1063/1.331946

    CAS  Article  Google Scholar 

  8. de Sousa D, Salvador E, Scuracchio CH, de Oliveira Barra, Guilherme Mariz, Lucas AdA, (2015) Chapter 7 - expanded graphite as a multifunctional filler for polymer nanocomposites. In: Friedrich K, Breuer U (eds) Multifunctionality of polymer composites. William Andrew Publishing, Oxford, pp 245–261

    Chapter  Google Scholar 

  9. Fu F, Yuan Q (2017) 12 - Electricity functional composite for building construction. In: Fan M, Fu F (eds) Advanced high strength natural fibre composites in construction. Woodhead Publishing, UK, pp 287–331

    Chapter  Google Scholar 

  10. Gordobil O, Delucis R, Egüés I, Labidi J (2015) Kraft lignin as filler in PLA to improve ductility and thermal properties. Ind Crops Prod 72:46–53. https://doi.org/10.1016/j.indcrop.2015.01.055

    CAS  Article  Google Scholar 

  11. Gulrez SKH, Mohsin MEA, Shaikh H, Anis A, Pulose AM, Yadav MK, Qua EHP, Al-Zahrani SM (2014) A review on electrically conductive polypropylene and polyethylene. Polym Compos 35:900–914. https://doi.org/10.1002/pc.22734

    CAS  Article  Google Scholar 

  12. Haznedar G, Cravanzola S, Zanetti M, Scarano D, Zecchina A, Cesano F (2013) Graphite nanoplatelets and carbon nanotubes based polyethylene composites: electrical conductivity and morphology. Mater Chem Phys 143:47–52. https://doi.org/10.1016/j.matchemphys.2013.08.008

    CAS  Article  Google Scholar 

  13. He S, Zhang J, Xiao X, Hong X, Lai Y (2017) Investigation of the conductive network formation of polypropylene/graphene nanoplatelets composites for different platelet sizes. J Mater Sci 52:13103–13119. https://doi.org/10.1007/s10853-017-1413-y

    CAS  Article  Google Scholar 

  14. Idumah CI, Hassan A (2016) Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synth Met 212:91–104. https://doi.org/10.1016/j.synthmet.2015.12.011

    CAS  Article  Google Scholar 

  15. Imran KA, Lou J, Shivakumar KN (2018) Enhancement of electrical and thermal conductivity of polypropylene by graphene nanoplatelets. J Appl Polym Sci 135:45833. https://doi.org/10.1002/app.45833

    CAS  Article  Google Scholar 

  16. Jun Y, Um JG, Jiang G, Yu A (2018) A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. Express Polym Lett 12:885–897. https://doi.org/10.3144/expresspolymlett.2018.76

    CAS  Article  Google Scholar 

  17. Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907. https://doi.org/10.1007/s10853-007-1876-3

    CAS  Article  Google Scholar 

  18. Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051. https://doi.org/10.1016/j.compscitech.2006.11.014

    CAS  Article  Google Scholar 

  19. Karteri I, Altun M, Gunes M (2017) Electromagnetic interference shielding performance and electromagnetic properties of wood-plastic nanocomposite with graphene nanoplatelets. J Mater Sci Mater Electron 28:6704–6711. https://doi.org/10.1007/s10854-017-6364-1

    CAS  Article  Google Scholar 

  20. Khanam NP, AlMaadeed MA, Ouederni M, Harkin-Jones E, Mayoral B, Hamilton A, Sun D (2016) Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. Vacuum 130:63–71. https://doi.org/10.1016/j.vacuum.2016.04.022

  21. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530. https://doi.org/10.1021/ma100572e

    CAS  Article  Google Scholar 

  22. Kim H, Macosko CW (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809. https://doi.org/10.1016/j.polymer.2009.05.038

    CAS  Article  Google Scholar 

  23. Lee S, Choi O, Lee W, Yi J, Kim B, Byun J, Yoon M, Fong H, Thostenson ET, Chou T (2011) Processing and characterization of multi-scale hybrid composites reinforced with nanoscale carbon reinforcements and carbon fibers. Compos A Appl Sci Manuf 42:337–344. https://doi.org/10.1016/j.compositesa.2010.10.016

    CAS  Article  Google Scholar 

  24. Leu S, Yang T, Lo S, Yang T (2012) Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs). Constr Build Mater 29:120–127. https://doi.org/10.1016/j.conbuildmat.2011.09.013

    Article  Google Scholar 

  25. Li A, Zhang C, Zhang Y (2017) Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers 9:437. https://doi.org/10.3390/polym9090437

    CAS  Article  PubMed Central  Google Scholar 

  26. Li X, Lei B, Lin Z, Huang L, Tan S, Cai X (2014) The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Mater Des 53:419–424. https://doi.org/10.1016/j.matdes.2013.07.028

    CAS  Article  Google Scholar 

  27. Li Y, Zhu J, Wei S, Ryu J, Sun L, Guo Z (2011) Poly(propylene)/graphene nanoplatelet nanocomposites: melt rheological behavior and thermal, electrical, and electronic properties. Macromol Chem Phys 212:1951–1959. https://doi.org/10.1002/macp.201100263

    CAS  Article  Google Scholar 

  28. Liang JZ, Wang JZ, Tsui GCP, Tang CY (2015) Thermal decomposition kinetics of polypropylene composites filled with graphene nanoplatelets. Polym Test 48:97–103. https://doi.org/10.1016/j.polymertesting.2015.09.015

    CAS  Article  Google Scholar 

  29. Mertens R (2017) NanoXplore plans a 10,000 ton graphene powder facility. In: https://www.graphene-info.com/nanoxplore-plans-10000-ton-graphene-powder-facility. Accessed Dec 31, 2020

  30. Moultif N, Masmoudi M, Joubert E, Latry O (2017) 5 - reliability and qualification tests for high-power MOSFET transistors. In: El Hami A, Delaux D, Grzeskowiak H (eds) Reliability of high-power mechatronic systems 2. Elsevier, Amsterdam, pp 155–197

    Chapter  Google Scholar 

  31. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    CAS  Article  Google Scholar 

  32. Papageorgiou DG, Kinloch IA, Young RJ (2016) Hybrid multifunctional graphene/glass-fibre polypropylene composites. Compos Sci Technol 137:44–51. https://doi.org/10.1016/j.compscitech.2016.10.018

    CAS  Article  Google Scholar 

  33. Park HM, Kalitzidou K, Fukushima H, Drzal LT (2007) Exfoliated graphite nanoplatelet (xGnP)/polypropylene nanocomposites. SPE 7th annual automotive composites conference and exhibition, ACCE 2007—driving performance and productivity

  34. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684. https://doi.org/10.1063/1.1728417

    CAS  Article  Google Scholar 

  35. Pedrazzoli D, Pegoretti A, Kalaitzidou K (2015) Synergistic effect of graphite nanoplatelets and glass fibers in polypropylene composites. J Appl Polym Sci. https://doi.org/10.1002/app.41682

    Article  Google Scholar 

  36. Pedrazzoli D, Pegoretti A (2013) Silica nanoparticles as coupling agents for polypropylene/glass composites. Compos Sci Technol 76:77–83. https://doi.org/10.1016/j.compscitech.2012.12.016

    CAS  Article  Google Scholar 

  37. Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng, B 215:9–28. https://doi.org/10.1016/j.mseb.2016.10.004

    CAS  Article  Google Scholar 

  38. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25. https://doi.org/10.1016/j.polymer.2010.11.042

    CAS  Article  Google Scholar 

  39. Rowell RM (2006) Advances and challenges of wood polymer composites. Proceedings of the 8th pacific rim bio-based composites symposium, advances and challenges in biocomposites: 20–23 November 2006, Kuala Lumper, Malaysia. Kepong, Malaysia : Forest Research Institute Malaysia, c2006: ISBN: 9832181879: 9789832181873: pp 2–11

  40. Sheshmani S, Ashori A, Arab Fashapoyeh M (2013) Wood plastic composite using graphene nanoplatelets. Int J Biol Macromol 58:1–6. https://doi.org/10.1016/j.ijbiomac.2013.03.047

    CAS  Article  PubMed  Google Scholar 

  41. Syurik J, Ageev OA, Cherednichenko DI, Konoplev BG, Alexeev A (2013) Non-linear conductivity dependence on temperature in graphene-based polymer nanocomposite. Carbon 63:317–323. https://doi.org/10.1016/j.carbon.2013.06.084

    CAS  Article  Google Scholar 

  42. Syurik YV, Ghislandi MG, Tkalya EE, Paterson G, McGrouther D, Ageev OA, Loos J (2012) Graphene network organisation in conductive polymer composites. Macromol Chem Phys 213:1251–1258. https://doi.org/10.1002/macp.201200116

    CAS  Article  Google Scholar 

  43. Thwe MM, Liao K (2003) Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 63:375–387. https://doi.org/10.1016/S0266-3538(02)00225-7

    CAS  Article  Google Scholar 

  44. Tripathi SN, Rao GSS, Mathur AB, Jasra R (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7:23615–23632. https://doi.org/10.1039/C6RA28392F

    CAS  Article  Google Scholar 

  45. Wang J, Kazemi Y, Wang S, Hamidinejad M, Mahmud MB, Pötschke P, Park CB (2020) Enhancing the electrical conductivity of PP/CNT nanocomposites through crystal-induced volume exclusion effect with a slow cooling rate. Compos B Eng 183:107663. https://doi.org/10.1016/j.compositesb.2019.107663

    CAS  Article  Google Scholar 

  46. Yadav R, Tirumali M, Wang X, Naebe M, Kandasubramanian B (2019) Polymer composite for antistatic application in aerospace. Def Technol. https://doi.org/10.1016/j.dt.2019.04.008

    Article  Google Scholar 

  47. Yang H, Gong J, Wen X, Xue J, Chen Q, Jiang Z, Tian N, Tang T (2015) Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos Sci Technol 113:31–37. https://doi.org/10.1016/j.compscitech.2015.03.013

    CAS  Article  Google Scholar 

  48. Zhang H, Zheng W, Yan Q, Yang Y, Wang J, Lu Z, Ji G, Yu Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196. https://doi.org/10.1016/j.polymer.2010.01.027

    CAS  Article  Google Scholar 

  49. Zhang X, Zhang J, Wang R (2019) Thermal and mechanical behavior of wood plastic composites by addition of graphene nanoplatelets. Polymers 11:1365. https://doi.org/10.3390/polym11081365

    CAS  Article  PubMed Central  Google Scholar 

  50. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 67:2528–2534. https://doi.org/10.1016/j.compscitech.2006.12.009

    CAS  Article  Google Scholar 

  51. Zheng W, Lu X, Wong S (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91:2781–2788. https://doi.org/10.1002/app.13460

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study has received funding from EU Interreg IV North program 2014—2020 by The county Administrative Board of Norrbotten, Sweden and Regional Council of Lapland, Finland, for project SMART-WPC. The authors gratefully acknowledge the financial support received for the project. Authors are thankful to Ms. Zainab Al-Maqdasi, Luleå University of Technology for fracture surface SEM images and Mr. Juha Junkala, Centria UAS for assistance in laboratory.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rathish Rajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajan, R., Näkki, J., Layek, R. et al. Wood plastic composites with improved electrical and thermal conductivity. Wood Sci Technol 55, 719–739 (2021). https://doi.org/10.1007/s00226-021-01275-9

Download citation