Skip to main content

Experimental study on crack initiation and propagation of wood with LT-type crack using digital image correlation (DIC) technique and acoustic emission (AE)

Abstract

Monitoring the cracks initiation and propagation of construction materials, as well as determining the fracture process zone, constitute two key factors to understand the damage mechanism of materials in order to control the risk of material degradation and failure. This paper demonstrates the results of a laboratory static test designed to investigate the in situ monitoring of crack tip growth in wood. LT-type single-edge notched specimens made of Chinese fir with the seam height ratio of 0.1, 0.2 and 0.3 were tested by three-point bending experiment. In this paper, acoustic emission (AE) method and digital image correlation (DIC) method were used to study the damage process of Chinese fir under monotonic loading techniques simultaneously. The results show that analyzing AE signals by considering the acoustic emission event number and the cumulative events yields interesting information on crack initiation and propagation. Based on the displacement field obtained from the DIC, the cracking displacement (COD) and crack extension length during crack propagation can be converted to provide information about the evolution of the fracture process zone at the interface. Moreover, an additional analysis of DIC and AE data indicates good correlation (involving the crack extension length and the cumulative events). It opens the possibility to characterize the crack initiation and propagation of wood materials without visible wood cracks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ashby MF, Easterling KE, Harryson R, Maiti SK (1985) The fracture and toughness of woods. Proc R Soc Lond A398:261–280

    Google Scholar 

  2. Baensch F, Sause MGR, Brunner AJ, Niemz P (2015) Damage evolution in wood-pattern recognition based on acoustic emission frequency spectra. Holzforschung 69:357–365. https://doi.org/10.1515/hf-2014-0072

    CAS  Article  Google Scholar 

  3. Barile C, Casavola C, Pappalettera G, Pappalettere C (2015) Analysis of crack propagation in stainless steel by comparing acoustic emissions and infrared thermography data. Eng Fail Anal 69:35–42. https://doi.org/10.1016/j.engfailanal.2016.02.022

    CAS  Article  Google Scholar 

  4. Blaber J, Adair B, Antoniou A (2015) Ncorr: open-source 2D digital image correlation Matlab software. Exp Mech. https://doi.org/10.1007/s11340-015-0009-1

    Article  Google Scholar 

  5. Clerc G, Sause MGR, Brunner AJ, Niemz P, van de Kuilen J-W (2019) Fractography combined with unsupervised pattern recognition of acoustic emission signals for a better understanding of crack propagation in adhesively bonded wood. Wood Sci Technol 53(6):1235–1253. https://doi.org/10.1007/s00226-019-01136-6

    CAS  Article  Google Scholar 

  6. Coureau JL, Morel S, Dourado N (2013) Cohesive zone model and quasibrittle failure of wood: a new light on the adapted specimen geometries for fracture tests. Eng Fract Mech 109:328–340. https://doi.org/10.1016/j.engfracmech.2013.02.025

    Article  Google Scholar 

  7. Dai Y, Gruber D, Harmuth H (2017) Observation and quantification of the fracture process zone for two magnesia refractories with different brittleness. J Eur Ceram Soc 37:2521–2529. https://doi.org/10.1016/j.jeurceramsoc.2017.02.005

    CAS  Article  Google Scholar 

  8. der Put V (2007) A new fracture mechanics theory for orthotropic materials like wood. Eng Fract Mech 74:771–781

    Article  Google Scholar 

  9. Diakhate M, Bastidas-Arteaga E, Moutou Pitti R, Schoefs F (2017) Probabilistic improvement of crack propagation monitoring by using acoustic emission. Fract Fatigue Fail Damage Evol. https://doi.org/10.1007/978331942195716

    Article  Google Scholar 

  10. Diakhate M, Bastidas-Arteaga E, Pitti RM, Schoefs F (2017) Cluster analysis of acoustic emission activity within wood material: towards a real-time monitoring of crack tip propagation. Eng Fract Mech 180:254–267. https://doi.org/10.1007/978331942195716

    Article  Google Scholar 

  11. Gencturk B, Hossain K, Kapadia A, Labib E, Mo YL (2014) Use of digital image correlation technique in full-scale testing of prestressed concrete structures. Measurement 47:505–515. https://doi.org/10.1016/j.measurement.2013.09.018

    Article  Google Scholar 

  12. Hadjab SH, Chabaat M, Thimus JF (2007) Use of scanning electron microscope and the non-local isotropic damage model to investigate fracture process zone in notched concrete beams. Exp Mech 47(4):473–484. https://doi.org/10.1007/s1134000690010

    Article  Google Scholar 

  13. Haggerty M, Lin Q, Labuz J (2010) Observing deformation and fracture of rock with speckle patterns. Rock Mech Rock Eng 43(4):417–426. https://doi.org/10.1007/s00603-009-0055-z

    Article  Google Scholar 

  14. Harilal R, Ramji M (2014) Adaptation of open source 2D DIC software Ncorr for solid mechanics applications. In: 9th international symposium on advanced science and technology in experimental mechanics

  15. Hu X, Duan K (2007) Size effect: influence of proximity of fracture process zone to specimen boundary. Eng Fract Mech 74:1093–1100. https://doi.org/10.1016/j.engfracmech.2006.12.009

    Article  Google Scholar 

  16. Hu XY, Liu ZL, Zhuang Z (2017) XFEM study of crack propagation in logs after growth stress relaxation and drying stress accumulation. Wood Sci Technol 51(6):1447–1468. https://doi.org/10.1007/s00226-017-0943-4

    CAS  Article  Google Scholar 

  17. King MJ, Sutherland IJ, Le-Ngoc L (1999) Fracture toughness of wet and dry Pinus radiate. Holz Rch-Werkst 57(4):235–240. https://doi.org/10.1007/s001070050048

    CAS  Article  Google Scholar 

  18. Kollmann FFP, Côté WA Jr (1968) Principles of wood science and technology. I: solid wood. Springer, Berlin. https://doi.org/10.1007/9783642879319

    Book  Google Scholar 

  19. Kordatos EZ, Aggelis DG, Matikas TE (2012) Monitoring mechanical damage in structural materials using complimentary NDE techniques based on thermography and acoustic emission. Compos Part B Eng 43(6):2676–2686. https://doi.org/10.1016/j.compositesb.2011.12.013

    CAS  Article  Google Scholar 

  20. Krause M, Dackermann U, Li J (2015) Elastic wave modes for the assessment of structural timber: ultrasonic echo for building elements and guided waves for pole and pile structures. J Civ Struct Health Monit 5:221–249. https://doi.org/10.1007/s1334901400872

    Article  Google Scholar 

  21. Lamy F, Takarli M, Angellier N, Dubois F, Pop O (2015) Acoustic emission technique for fracture analysis in wood materials. Int J Fract 192(1):57–70. https://doi.org/10.1007/s10704-014-9985-x

    CAS  Article  Google Scholar 

  22. Manterola J, Aguirre M, Zurbitu J, Renart J, Turon A, Urresti I (2020) Using acoustic emissions (AE) to monitor mode I crack growth in bonded joints. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2019.106778

    Article  Google Scholar 

  23. Morel S, Lespine C, Coureau JL, Planas J, Dourado N (2010) Bilinear softening parameters and equivalent LEFM R-curve in quasibrittle failure. Int J Solids Struct 47:837–850. https://doi.org/10.1016/j.ijsolstr.2009.11.022

    Article  Google Scholar 

  24. Murata K, Nagai H, Nakano T (2011) Estimation of width of fracture process zone in spruce wood by radial tensile test. Mech Mater 43(7):389–396. https://doi.org/10.1016/j.mechmat.2011.04.005

    Article  Google Scholar 

  25. Nizolek TJ, Begley MR, McCabe RJ, Avallone JT, Mara NA, Beyerlein IJ, Pollock TM (2017) Strain fields induced by kink band propagation in Cu–Nb nanolaminate composites. Acta Mater 133:303–315. https://doi.org/10.1016/j.actamat.2017.04.050

    CAS  Article  Google Scholar 

  26. Reiterer A, Sinn G, Stanzl-Tschegg SE (2002) Fracture characteristics of different wood species under mode I loading perpendicular to the grain. Mater Sci Eng A Struct 332:29–36. https://doi.org/10.1016/S0921-5093(01)01721-X

    Article  Google Scholar 

  27. Riahia H, Moutou PR, Duboise F, Chateauneuf A (2016) Mixed-mode fracture analysis combining mechanical, thermal and hydrological effects in anisotropic and orthotropic material by means of invariant integrals. Theor Appl Fract Mech 85:424–434. https://doi.org/10.1016/j.tafmec.2016.06.002

    Article  Google Scholar 

  28. Schachner H, Reiterer A, Stanzl-Tschegg SE (2000) Orthotropic fracture toughness of wood. J Mater Sci Lett 19(20):1783–1785. https://doi.org/10.1023/A:1006703718032

    CAS  Article  Google Scholar 

  29. Sciammarella C, Sciammarella A, Federico M (2012) Experimental mechanics of solids. Wiley, Chichester, pp 607–629

    Book  Google Scholar 

  30. Smith I, Landies E, Gong M (2003) Fracture and fatigue in wood. Wiley, Hoboken, NJ

    Google Scholar 

  31. Song H, Zhang H, Fu D, Kang Y, Huang G, Qu C, Cai Z (2013) Experimental study on damage evolution of rock under uniformand concentrated loading conditions using digital image correlation. Fatigue Fract Eng Mater Struct 36(8):760–768. https://doi.org/10.1111/ffe.12043

    Article  Google Scholar 

  32. Stanzl-Tschegg SE, Tan DM, Tschegg EK (1995) New splitting method for wood fracture characterization. Wood Sci Technol 29:31–50. https://doi.org/10.1007/BF00196930

    CAS  Article  Google Scholar 

  33. Wang D, Lin LY, Fu F, Fan MZ (2019) The softwood fracture mechanisms at the scales of the growth ring and cell wall under bend loading. Wood Sci Technol 53(6):1295–1310. https://doi.org/10.1007/s00226-019-01132-w

    CAS  Article  Google Scholar 

  34. Watanabe K, Shida S, Ohta M (2011) Evaluation of end-check propagation based on mode I fracture toughness of sugi (Crytomeria japonica). J Wood Sci 57:371–376. https://doi.org/10.1007/s1008601111879

    Article  Google Scholar 

  35. Yoshihara H, Satoh A (2009) Shear and crack tip deformation correction for the double cantilever beam and three-point end-notched flexure specimens for mode I and mode II fracture toughness measurement of wood. Eng Fract Mech 76:335–346. https://doi.org/10.1016/j.engfracmech.2008.10.012

    Article  Google Scholar 

  36. Yu Y, Zeng WH, Liu W, Zhang H, Wang XH (2019) Crack propagation and fracture process zone (FPZ) of wood in the longitudinal direction determined using digital image correlation (DIC) technique. Remote Sens (Basel). https://doi.org/10.3390/rs11131562

    Article  Google Scholar 

  37. Zhao Q, Zhao D, Zhao J (2020) Thermodynamic approach for the identification of instability in the wood using acoustic emission technology. Forests. https://doi.org/10.3390/f11050534

    Article  Google Scholar 

  38. Zhou Z, Chen P, Duan Z, Huang F (2012) Study on fracture behavior of a polymer-bonded explosive simulant subjected to uniaxial compression using digital image correlation method. Strain 48(4):326–332. https://doi.org/10.1111/j.1475-1305.2011.00826.x

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Fundamental Research Funds for the Central Universities Foundation, Project Number 2021ZY67.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dong Zhao or Jian Zhao.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tu, J., Zhao, D., Zhao, J. et al. Experimental study on crack initiation and propagation of wood with LT-type crack using digital image correlation (DIC) technique and acoustic emission (AE). Wood Sci Technol (2021). https://doi.org/10.1007/s00226-020-01252-8

Download citation