Skip to main content

Co-production of soluble sugars and lignin from short rotation white poplar and black locust crops

Abstract

Co-production of sugars and lignin from short rotation white poplar and black locust crops is evaluated. Acid-catalyzed ethanol/water organosolv and dilute acid pretreatments are analyzed. Resulting pretreated materials are hydrolyzed enzymatically for sugar production, whereas solubilized lignins from pretreatment liquors are precipitated, analyzed by analytical standard, and characterized by FTIR spectroscopy, SEC chromatography, and solid-state 13C NMR. Organosolv produces in both materials a high delignification degree (46–50%) and a considerable hemicelluloses removal (62–67%), while acid hydrolysis is more efficient at removing hemicelluloses (86–90%), showing a delignification of 43% (white poplar) and 31% (black locust). Organosolv followed by enzymatic hydrolysis results in 37.8% (white poplar) and 38.2% (black locust) total sugars yields, whereas acid pretreatment and subsequent saccharification show higher sugars yields for white poplar (43.3%) and lower for black locust (29.1%). Regarding lignin samples, higher concentrations are recovered from organosolv liquors of both materials (67.8% and 44.9% yields for white poplar and black locust, respectively) compared to the quantities extracted from acid liquors of white poplar (4.6%) and black locust (6.8%). Organosolv lignins display a lower content of S units and phenols, and higher molecular weights. Contrary, acid lignins consist mainly of phenolic fragments with a higher content of S units and lower molecular weights.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alekhina M, Ershova O, Ebert A, Heikkinen S, Sixta H (2015) Softwood kraft lignin for value-added applications: fractionation and structural characterization. Ind Crops Prod 66:220–228

    CAS  Google Scholar 

  2. Alvira P, Ballesteros M, Negro MJ (2013) Progres on enzymatic saccharification technologies for biofuels production. In: Gupta V, Tuohy M (eds) Biofuel Technologies. Springer, Berlin

    Google Scholar 

  3. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach. A review. Int J Biol Macro 99:308–318

    CAS  Google Scholar 

  4. Azadi P, Inderwildi OR, Farnood R, Kinga DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    CAS  Google Scholar 

  5. Berta M, Giovannelli A, Sebastiani F, Camussi A, Racchi ML (2010) Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biol 12:341–354

    CAS  Google Scholar 

  6. Borrero-López AM, Martín-Sampedro R, Ibarra D, Valencia C, Eugenio ME, Franco JM (2020) Evaluation of lignin-enriched side-streams from different biomass conversion processes as thickeners in bio-lubricant formulations. Int J Biol Macro 162:1398–1413

    Google Scholar 

  7. Brianna MU, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306

    Google Scholar 

  8. Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    CAS  Google Scholar 

  9. Cao S, Pu Y, Studer M, Wyman C, Ragauskas AJ (2012) Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Adv 2:10925–10936

    CAS  Google Scholar 

  10. Collins MN, Nechifor M, Tanasă F, Zănoagă M, McLoughlin A, Stróżyk MA, Culebras M, Teacăc C-A (2019) Valorization of lignin in polymer and composite systems for advanced engineering applications—a review. Int J Biol Macro 131:828–849

    CAS  Google Scholar 

  11. Culebras M, Geaney H, Beaucamp A, Upadhyaya P, Dalton E, Ryan KM, Collins MN (2019) Bio-derived carbon nanofibres from lignin as high-performance li-ion anode materials. Chem Sus Chem 12:4516–4521

    CAS  Google Scholar 

  12. Dalli SS, da Silva SS, Uprety BK, Rakshit SK (2017) Enhanced production of xylitol from poplar wood hydrolysates through a sustainable process using immobilized new strain Candida tropicalis UFMG BX 12-a. Appl Biochem Biotechnol 182:1053–1064

    CAS  PubMed  Google Scholar 

  13. del Río JC, Gutiérrez A, Romero J, Martínez MJ, Martínez AT (2001) Identification of residual lignin markers in eucalypt kraft pulps by Py-GC/MS. J Anal Appl Pyr 58–59:425–439

    Google Scholar 

  14. dos Santos PSB, Erdocia X, Gatto DA, Labidi J (2015) Characterization of kraft lignin separated by gradient acid precipitation. Ind Crops Prod 55:149–154

    Google Scholar 

  15. Dou C, Marcondes FW, Djaja JE, Bura R, Gustafson R (2017) Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice. Biotechnol Biofuels 10:144

    PubMed  PubMed Central  Google Scholar 

  16. El Mansouri NE, Yuan Q, Huang F (2011) Synthesis and characterization of kraft-lignin based epoxy resins. Bioresour 6:2492–2503

    Google Scholar 

  17. Fillat U, Ibarra D, Eugenio ME, Moreno AD, Tomás-Pejó E, Martín-Sampedro R (2017) Laccases as a potential tool for the enzymatic conversion of lignocellulosic biomass: a review. Fermentation 3:17

    Google Scholar 

  18. Fodil Cherif M, Trache D, Brosse N, Benaliouche F, Ahmed Fouzi Tarchoun AF (2020) Comparison of the physicochemical properties and thermal stability of organosolv and kraft lignins from hardwood and softwood biomass for their potential valorization. Waste Biomass Valor. https://doi.org/10.1007/s12649-020-00955-0

    Article  Google Scholar 

  19. Gandini A, Belgacen MN, Guo Z-X, Montanari S (2002) Lignins as macromonomers for polyester and polyurethanes. In: Hu TQ (ed) Chemical modification, properties and usage of lignin. Kluver Academic/Plenum, New York, pp 57–80

    Google Scholar 

  20. Garlock RJ, Wong YS, Balan V, Dale ED (2012) AFEX pretreatment and enzymatic conversion of black locust (Robinia pseudoacacia L.) to soluble sugars. Bioenerg Res 5:306–318

    CAS  Google Scholar 

  21. González-García S, Moreira MT, Feijoo G, Murphy RJ (2012) Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar). Biomass Bioenergy 39:378–388

    Google Scholar 

  22. Guo Y, Zhou J, Wen J, Sun G, Sun Y (2015) Structural transformation of triploid of Populus tomentosa Carr. lignin during auto-catalyzed etanol organosolv pretreatment. Ind Crops Prod 76:522–529

    CAS  Google Scholar 

  23. Hage RE, Brosse N, Sannigrahi P, Ragauskas A (2010) Effect of process severity on the chemical structure of mischanthus ethanol organosolv lignin. Polym Degrad Sta 95:997–1003

    Google Scholar 

  24. Henriksson G, Lawoko M, Eugenio ME, Gellersted G (2007) Lignin-carbohydrate network in wood and pulps: a determinant for reactivity. Holzforschung 61:668–674

    CAS  Google Scholar 

  25. Huijgen WJ, Smit AT, Reith JH, den Uil H (2011) Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. J Chem Technol Biotechnol 86:1428–1438

    CAS  Google Scholar 

  26. Ibarra D, del Río JC, Gutiérrez A, Rodríguez IM, Romero J, Martínez MJ, Martínez AT (2004) Isolation of high-purity residual lignins from eucalypt paper pulps by cellulase and proteinase treatments followed by solvent extraction. Enzyme Microb Technol 35:173–181

    CAS  Google Scholar 

  27. Ibarra D, Eugenio ME, Cañellas I, Sixto H, Martín-Sampedro R (2017) Potential of different poplar clones for sugar production. Wood Sci Technol 51:669–684

    CAS  Google Scholar 

  28. Jang S-K, Jeong H, Kim H-Y, Choi J-H, Kim J-H, Koo B-W, Choi I-G (2017) Evaluation of correlation between glucan conversion and degree of delignification depending on pretreatment strategies using Jabon Merah. Bioresour Technol 236:111–118

    CAS  PubMed  Google Scholar 

  29. Leu S-Y, Zhu Y (2013) Substrate related factors affecting enzymatic saccharification of lignocelluloses: a review and analysis of recent literature. Bionergy Res 6:405–415

    CAS  Google Scholar 

  30. Li C, Sun L, Simmons BA, Singh S (2013) Comparing the recalcitrance of eucalyptus, pine, and switchgrass using ionic liquid and dilute acid pretreatments. Bionergy Res 6:14–23

    Google Scholar 

  31. Li X, He Y, Zhang L, Xu Z, Ben H, Gaffrey MJ, Yang Y, Yang S, Yuan JS, Qian W-J, Yang B (2019) Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnol Biofuels 12:60

    PubMed  PubMed Central  Google Scholar 

  32. Ma C, Mei X, Fan Y, Zhang Z (2018) Oxidative depolymerizaton of kraft lignin and its application in the synthesis of lignin-phenol-formaldehyde resin. Bioresources 13:1223–1234

    CAS  Google Scholar 

  33. Marron N, Priault P, Gana C, Gérant D, Epron D (2018) Prevalence of interspecific competition in a mixed poplar/black locust plantation under adverse climate conditions. Ann Sci 75:23

    Google Scholar 

  34. Martín-Sampedro R, Rahikainen JL, Johansson L-S, Marjamaa K, Laine J, Kruus K, Rojas OJ (2013) Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content. Biomacromol 14:1231–1239

    Google Scholar 

  35. Martín-Sampedro R, Eugenio ME, Fillat U, Martín JA, Aranda P, Ruiz-Hitzky E, Ibarra D, Wicklein B (2019) Biorefinery of lignocellulosic biomass from an elm clone: production of fermentable sugars and lignin-derived biochar for energy and environmental applications. Energy Technol 7:277–287

    Google Scholar 

  36. Moreno AD, Olsson L (2017) pretreatment of lignocellulosic feedstocks. In: Rajesh K, Sani R, Navanietha K (eds) Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy. Springer, Berlin

    Google Scholar 

  37. Moreno AD, Alvira P, Ibarra D, Tomás-Pejó E (2017) Production of ethanol from lignocellulosic biomass. In: Fang Z, Smith J, Richard L, Xinhua Q (eds) Production of chemicals from sustainable resources, biofuel and biorefineries, vol 7. Springer, Berlin, pp 375–410

    Google Scholar 

  38. Nassi o di Nasso N, Guidi W, Ragaglini G, Tozzini C, Bonari E (2010) Biomass production and energy balance of a 12-year-old short-rotation coppice poplar stand under different cutting cycles. GCB Bioenergy 2:89–97

    Google Scholar 

  39. National Renewable Energy Laboratory, NREL. Chemical Analysis and Testing Laboratory Analytical Procedures (2010) Retrieved from http://www.eere.energy.gov/biomass/analyticalprocedures.html

  40. Oliveira N, del Río M, Forrester DI, Rodríguez-Soalleiro R, Pérez-Cruzado C, Cañellas I, Sixto H (2018) Mixed short rotation plantations of Populus alba and Robinia pseudoacacia for biomass yield. Forest Ecol Manag 410:48–55

    Google Scholar 

  41. Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Biong 94:851–861

    CAS  Google Scholar 

  42. Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312

    CAS  PubMed  Google Scholar 

  43. Pinto PC, Evtuguin DV, Neto CP (2005) Chemical composition and structural features of the macromolecular components of plantation Acacia mangium wood. J Agric Food Chem 53:7856–7862

    CAS  PubMed  Google Scholar 

  44. Raghavendran V, Nitsos C, Matsakas L, Rova U, Christakopoulos P, Olsson L (2018) A comparative study of the enzymatic hydrolysis of batch organosolv-pretreated birch and spruce biomass. AMB Express 8:114

    PubMed  PubMed Central  Google Scholar 

  45. Rahikainen JL, Martín-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K (2013) Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol 133:270–278

    CAS  PubMed  Google Scholar 

  46. Rohde V, Hahn T, Wagner M, Böringer S, Tübke B, Brosse N, Dahmen N, Schmiedl D (2018) Potential of a short rotation coppice poplar as a feedstock for platform chemicals and lignin-based building block. Ind Crops Prod 123:698–706

    CAS  Google Scholar 

  47. Rojas OJ, Bullón J, Ysambertt F, Forgiarini A, Salager J-L, Argyropoulos DS (2007) Lignins as emulsion stabilizers. Materials, chemicals, and energy from forest biomass. ACS Symp Ser 954:182–199

    CAS  Google Scholar 

  48. Romaní A, Garrote G, Ballesteros I, Ballesteros M (2013) Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel 111:66–74

    Google Scholar 

  49. Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM et al (2012) Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem 14:3295–3303

    CAS  Google Scholar 

  50. Santos JI, Fillat Ú, Martín-Sampedro R, Ballesteros I, Manzanares P, Ballesteros M, Eugenio ME, Ibarra D (2015a) Lignin-enriched fermentation residues from bioethanol production of fast growing poplar and forage sorghum. Bioresour 10:5215–5232

    CAS  Google Scholar 

  51. Santos JI, Martín-Sampedro R, Fillat Ú, Oliva JM, Negro MJ, Ballesteros M, Eugenio ME, Ibarra D (2015b) Evaluating lignin-rich residues from biochemical ethanol production of wheat straw and olive tree pruning by FTIR and 2D-NMR. Int J Pol Sci ID314891

  52. Santos JI, Fillat Ú, Martín-Sampedro R, Eugenio ME, Negro MJ, Ballesteros I, Rodríguez A, Ibarra D (2017) Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: bioethanol production and alkaline pulping. Int J Biol Macro 105:238–251

    CAS  Google Scholar 

  53. Schutyser W, Renders T, Van den Bosch S, Koelewijn S-F, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908

    CAS  PubMed  Google Scholar 

  54. Seibert-Ludwig D, Hahn T, Hirth T, Zibek S (2019) Selection and optimization of a suitable pretreatment method for miscanthus and poplar raw material. GCB Bioenergy 11:171–180

    CAS  Google Scholar 

  55. Sivasankarapillai G, McDonald AG, Li H (2012) Lignin valorization by forming toughened lignin-co-polymers: development of hyperbranched prepolymers for cross-linking. Biomass Bioenerg 47:99–108

    CAS  Google Scholar 

  56. Sixto H, Hernández MJ, Ciria P, Carrasco JE, Cañellas I (2010) Manual de cultivo de Populus spp.para la producción de biomasa con fines energéticos Monografía INIA. 60 pp. ISBN: 978-84-7498-530-6

  57. Sixto H, Cañellas I, Joostvan A, Ciria P, Camps F, Sánchez M, Sánchez-González M (2015) Growth potential of different species and genotypes for biomass production in short rotation in Mediterranean environments. For Ecol Manag 354:291–299

    Google Scholar 

  58. Sun Q, Pu Y, Meng X, Wells T, Ragauskas AJ (2015) Structural transformation of isolated poplar and switchgrass lignins during dilute acid treatment. ACS Sust Chem Eng 3(9):2203–2210

    CAS  Google Scholar 

  59. Tolbert A, Akinosho H, Khunsupat R, Naskar A, Ragauskas A (2015) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuel Bioprod Bior 8:836–856

    Google Scholar 

  60. Toledano A, Erdocia X, Serrano L, Labidi J (2013) Influence of extraction treatment on olive tree (Olea europea) pruning lignin structrure. Environ Prog Chem Eng 32:1187–1194

    CAS  Google Scholar 

  61. Wang ZJ, Zhu JY, Zalesny RS, Chen KF (2012) Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel 95:606–614

    CAS  Google Scholar 

  62. Wang B, Shen X-J, Wen J-L, Xiao L, Sun R-C (2017) Evaluation of organosolv pretreatment on the structural characteristics of lignin polymers and follow-up enzymatic hydrolysis of the substrates from Eucalyptus wood. Int J Biolog Macromol 97:447–459

    CAS  Google Scholar 

  63. Wei W, Wu S, Liu L (2012) Enzymatic saccharification of dilute acid pretreated eucalyptus chips for fermentable sugar production. Bioresour Technol 110:302–307

    CAS  PubMed  Google Scholar 

  64. Wu M, Pang J, Zhang X, Sun R-C (2014) Enhancement of lignin biopolymer isolation from hybrid poplar by organosolv pretreatments. Int J Pol Sci ID194726, 1–10

  65. Yan L, Zhang L, Yang B (2014) Enhancement of total sugar and lignin yields trought dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment. Biotechnol Biofuels 7:76

    PubMed  PubMed Central  Google Scholar 

  66. Yáñez-S M, Matsuhiro B, Nuñez C, Pan S, Hubbell CA, Sannigrahi P, Ragauskas AJ (2014) Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: effect of extraction conditions on the molecular structure. Pol Degrad Stab 110:184–194

    Google Scholar 

  67. Yang D, Li H, Qin Y, Zhong R, Bai M, Qiu X (2015) Structure and properties of sodium lignosulfonate with different molecular weight used as dye dispersant. J Disp Sci Technol 36:532–539

    CAS  Google Scholar 

  68. Yang H, Yoo CG, Meng X, Pu Y, Wellington M, Tuskan GA, Tschaplisnki TJ, Ragauskas AJ, Yao L (2020) Structural changes of lignins in natural Populus variants during different pre-treatments. Bioresour Technol 295:122240

    CAS  PubMed  Google Scholar 

  69. Yeh T-F, Chang M-J, Chang W-J (2014) Comparison of dilute acid and sulfite pretreatments on Acacia confuse for biofuel application and the influence of its extractives. J Agric Food Chem 62:10768–10775

    CAS  PubMed  Google Scholar 

  70. Yuan T-Q, Xu F, Sun R-C (2012) Role of lignin in a biorefinery: separation characterization and valorization. J Chem Technol Biotechnol 88:346–352

    Google Scholar 

  71. Zhang L, Yan Z, Wang DD, Laskar MS, Swita JR, Cort JR, Yang B (2015) Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures. Biotechnol Biofuels 8:203

    PubMed  PubMed Central  Google Scholar 

  72. Zhang L, Pu Y, Cort JR, Ragauskas AJ, Yang B (2016) Revealing the molecular structural transformation of hardwood and softwood in dilute acid flowthrough pretreatment. ACS Sustain Chem Eng 4(12):6618–6628

    CAS  Google Scholar 

  73. Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817–3828

    CAS  Google Scholar 

  74. Zhu W, Houtman CJ, Zhu JY, Gleisner R, Chen KF (2012) Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF). Process Biochem 47:785–791

    CAS  Google Scholar 

  75. Zhu J, Chen L, Gleisner R, Zhu JY (2019) Co-production of bioethanol and furfural from poplar wood via low temperature (≤ 90°C) acid hydrotopic fractionation (AHF). Fuel 115572

Download references

Acknowledgements

The authors wish to thank the Comunidad de Madrid and MICIU for funding this study via Projects SUSTEC-CM S2018/EMT-4348 and RTI2018-096080-B-C22, respectively. Raquel Martín-Sampedro acknowledges an IJCI contract (IJCI-2016-28403).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Ibarra.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiménez-López, L., Martín-Sampedro, R., Eugenio, M.E. et al. Co-production of soluble sugars and lignin from short rotation white poplar and black locust crops. Wood Sci Technol 54, 1617–1643 (2020). https://doi.org/10.1007/s00226-020-01217-x

Download citation