Skip to main content

Advertisement

Log in

A sustainable bio-based adhesive derived from defatted soy flour and epichlorohydrin

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

This study reports on the preparation and application of bio-based adhesive derived from renewable defatted soy flour (DSF) and epichlorohydrin (ECH), aiming at substituting formaldehyde-based adhesives in the wood industry. DSF was treated with Viscozyme® L to hydrolyze plant cell wall carbohydrates and then adjusted to an extremely low pH with hydrochloric acid containing ferric chloride to unfold the tertiary and/or quaternary structure of soy protein and expose its functional groups. The treated DSF was then glycidized with ECH to obtain the bio-based adhesive. The resulting adhesive contained epoxy groups, which were evidenced by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and 1H nuclear magnetic resonance. After curing, the epoxy groups contributed to good thermal stability and gluability of the adhesive. The grafting ratio of ECH decreased by 37.8% as the mass fraction added was increased from 5 to 25%, whereas the viscosity increased sharply by 2889.5% and the solid content increased slowly by 10.5%. Wet shear strength of Pinus massoniana plywood bonded with the bio-based adhesive with an ECH mass fraction of > 10% of the DSF mass was higher than 0.93 MPa, which met the requirements of the Chinese National Standard for plywood for interior/exterior applications. These results support the use of soy flour-based adhesives for plywood and provide data for evaluating their use as sustainable materials for other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almena A, Martín M (2016) Technoeconomic analysis of the production of epichlorohydrin from glycerol. Ind Eng Chem Res 55:3226–3238

    Article  CAS  Google Scholar 

  • Amaral-Labat G, Pizzi A, Goncalves A, Celzard A, Rigolet S, Rocha G (2008) Environment-friendly soy flour-based resins without formaldehyde. J Appl Polym Sci 108:624–632

    Article  CAS  Google Scholar 

  • Auvergne R, Caillol S, David G, Boutevin B, Pascault J-P (2013) Biobased thermosetting epoxy: present and future. Chem Rev 114:1082–1115

    Article  CAS  PubMed  Google Scholar 

  • Bergaoui M, Aguir C, Khalfaoui M, Enciso E, Duclaux L, Reinert L, Fierro JLG (2017) New insights in the adsorption of Bovine Serum Albumin onto carbon nanoparticles derived from organic resin: experimental and theoretical studies. Microporous Mesoporous Mater 241:418–428

    Article  CAS  Google Scholar 

  • Chen N, Lin Q, Rao J, Zeng Q (2013) Water resistances and bonding strengths of soy-based adhesives containing different carbohydrates. Ind Crop Prod 50:44–49

    Article  CAS  Google Scholar 

  • Chen N, Zeng Q, Rao J, Lin Q (2014) Effect of preparation conditions on bonding strength of soy-based adhesives via viscozyme L action on soy flour slurry. BioResources 9:7444–7453

    Google Scholar 

  • Chen N, Huang J, Li K (2019) Investigation of a new formaldehyde-free adhesive consisting of soybean flour and Kymene® 736 for interior plywood. Holzforschung 73:409–414

    Article  CAS  Google Scholar 

  • Cheng E, Sun X, Karr GS (2004) Adhesive properties of modified soybean flour in wheat straw particleboard. Compos A 35:297–302

    Article  CAS  Google Scholar 

  • Chu JH, Kwak J, Kim S-D et al (2014) Monolithic graphene oxide sheets with controllable composition. Nat Commun 5:3383

    Article  CAS  PubMed  Google Scholar 

  • Enterria M, Martin-Jimeno FJ, Suarez-Garcia F et al (2016) Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids. Carbon 105:474–483

    Article  CAS  Google Scholar 

  • Fache M, Montérémal C, Boutevin B, Caillol S (2015) Amine hardeners and epoxy cross-linker from aromatic renewable resources. Eur Polym J 73:344–362

    Article  CAS  Google Scholar 

  • Forrest T, Rabine JP, Rouillard M (2011) Organic spectroscopy workbook. Wiley, New York

    Google Scholar 

  • Fourcade D, Ritter BS, Walter P, Schönfeld R, Mülhaupt R (2013) Renewable resource-based epoxy resins derived from multifunctional poly (4-hydroxybenzoates). Green Chem 15:910–918

    Article  CAS  Google Scholar 

  • Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide: a review. J Agric Food Chem 51:4504–4526

    Article  CAS  PubMed  Google Scholar 

  • Frihart CR, Satori H (2013) Soy flour dispersibility and performance as wood adhesive. J Adhes Sci Technol 27:2043–2052

    Article  CAS  Google Scholar 

  • Gadwal I, Khan A (2013) Protecting-group-free synthesis of chain-end multifunctional polymers by combining ATRP with thiol-epoxy ‘click’ chemistry. Polym Chem 4:2440–2444

    Article  CAS  Google Scholar 

  • Gardner SD, Singamsetty CS, Booth GL, He G-R, Pittman CU (1995) Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 33:587–595

    Article  CAS  Google Scholar 

  • Ghahri S, Pizzi A (2018) Improving soy-based adhesives for wood particleboard by tannins addition. Wood Sci Technol 52:261–279

    Article  CAS  Google Scholar 

  • Gu J (2015) Present situation and development trend of wood adhesives in China. Adhesion 36:28–31

    Google Scholar 

  • Gu K, Li K (2011) Preparation and evaluation of particleboard with a soy flour-polyethylenimine-maleic anhydride adhesive. J Am Oil Chem Soc 88:673–679

    Article  CAS  Google Scholar 

  • Kim DH, Na SK, Park JS, Yoon KJ, Ihm DW (2002) Studies on the preparation of hydrolyzed starch-g-PAN (HSPAN)/PVA blend films: effect of the reaction with epichlorohydrin. Eur Polym J 38:1199–1204

    Article  CAS  Google Scholar 

  • Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B 44:120–127

    Article  CAS  Google Scholar 

  • Li H, Kang H, Zhang W, Zhang S, Li J (2016) Physicochemical properties of modified soybean-flour adhesives enhanced by carboxylated styrene-butadiene rubber latex. Int J Adhes Adhes 66:59–64

    Article  CAS  Google Scholar 

  • Lu Q, Wu C, Liu D et al (2017) A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem 19:900–904

    Article  CAS  Google Scholar 

  • Luo J, Li C, Li X, Luo J, Gao Q, Li J (2015) A new soybean meal-based bioadhesive enhanced with 5, 5-dimethyl hydantoin polyepoxide for the improved water resistance of plywood. RSC Adv 5:62957–62965

    Article  CAS  Google Scholar 

  • Luo J, Luo J, Li X, Li K, Gao Q, Li J (2016) Toughening improvement to a soybean meal-based bioadhesive using an interpenetrating acrylic emulsion network. J Mater Sci 51:9330–9341

    Article  CAS  Google Scholar 

  • McMurry J (2011) Organic chemistry. Brooks/Cole, Monterey

    Google Scholar 

  • Meier MA, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802

    Article  CAS  PubMed  Google Scholar 

  • Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog Polym Sci 38:344–368

    Article  CAS  Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson AT (2002) Food chemistry: acrylamide is formed in the Maillard reaction. Nature 419:448–449

    Article  CAS  PubMed  Google Scholar 

  • NgaiáSum Y (2013) Synthesis of cyclic carbonates with carbon dioxide and cesium carbonate. Green Chem 15:2086–2090

    Article  CAS  Google Scholar 

  • Nielsen GD, Larsen ST, Wolkoff P (2017) Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch Toxicol 91:35–61

    Article  CAS  PubMed  Google Scholar 

  • Ning YC, Ernst RR (2005) Structural identification of organic compounds with spectroscopic techniques. Wiley, New York

    Google Scholar 

  • Ning YC, Ernst RR (2011) Interpretation of organic spectra. Wiley, New York

    Book  Google Scholar 

  • Othmer K (1993) Encyclopedia of chemical technology, chlorocarbons and chlorohydrocarbons-CSUB 2/SUB to combustion technology. Wiley, New York

    Google Scholar 

  • Peng L, Xu Z, Liu Z et al (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 6:5716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quéré D (2002) Surface chemistry: Fakir droplets. Nat Mater 1:14–15

    Article  PubMed  Google Scholar 

  • Santacesaria E, Tesser R, Di Serio M, Casale L, Verde D (2009) New process for producing epichlorohydrin via glycerol chlorination. Ind Eng Chem Res 49:964–970

    Article  CAS  Google Scholar 

  • Thakur VK, Kessler MR (2014) Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain Chem Eng 2:2454–2460

    Article  CAS  Google Scholar 

  • Vázquez G, González-Álvarez J, López-Suevos F, Antorrena G (2003) Effect of veneer side wettability on bonding quality of Eucalyptus globulus plywoods prepared using a tannin–phenol–formaldehyde adhesive. Bioresour Technol 87:349–353

    Article  PubMed  Google Scholar 

  • Wu S (1987) Chain entanglement and melt viscosity of compatible polymer blends: poly (methyl methacrylate) and poly (styrene-acrylonitrile). Polymer 28:1144–1148

    Article  CAS  Google Scholar 

  • Xu Y, Xu Y, Zhu W, Zhang W, Gao Q, Li J (2018) Improve the performance of soy protein-based adhesives by a polyurethane elastomer. Polymers 10:1016

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Zhang M, Chen M, Luo J, Li X, Gao Q, Li J (2018) Preparation and characterization of a soy protein-based high-performance adhesive with a hyperbranched cross-linked structure. Chem Eng J 354:1032–1041

    Article  CAS  Google Scholar 

  • Zheng P, Chen N, Mahfuzul Islam SM et al (2019) Development of self-crosslinked soy adhesive by enzyme complex from Aspergillus niger for production of all-biomass composite materials. ACS Sustain Chem Eng 7:3909–3916

    Article  CAS  Google Scholar 

  • Zhu D, Damodaran S (2014) Chemical phosphorylation improves the moisture resistance of soy flour-based wood adhesive. J Appl Polym Sci 131:40451

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant No. 31500477) and the Natural Science Foundation of Fujian Province (Grant No. 2019J01389) for providing financial support for this research. We thank of the department of wood science and engineering at Oregon State University for the experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nairong Chen.

Ethics declarations

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Lin, Q., Zheng, P. et al. A sustainable bio-based adhesive derived from defatted soy flour and epichlorohydrin. Wood Sci Technol 53, 801–817 (2019). https://doi.org/10.1007/s00226-019-01102-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-019-01102-2

Navigation