Wood Science and Technology

, Volume 52, Issue 5, pp 1377–1394 | Cite as

Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials

  • B. N. KuznetsovEmail author
  • I. G. Sudakova
  • N. V. Garyntseva
  • V. A. Levdansky
  • N. M. Ivanchenko
  • A. V. Pestunov
  • L. Djakovitch
  • C. Pinel


The first green biorefinery of larch wood based on the fractionation of biomass into dihydroquercetin (DHQ), arabinogalactan (AG), microcrystalline cellulose (MCC) and soluble lignin (SL) is reported. The new green method of one-step isolation of DHQ and AG from larch wood by ethanol–water solution was developed. The first results of kinetic studies and optimization of the process of extracted larch wood peroxide fractionation into MCC and SL in acetic acid–water medium in the presence of green TiO2 catalyst are described. The products obtained from larch wood were characterized by FTIR, NMR, XRD, AFM and chemical methods. The scheme of larch wood biorefinery is suggested which integrates the developed processes of woody biomass fractionation into DHQ, AG, MCC and SL. All developed methods use non-toxic and less-toxic reagents, such as water, ethanol, hydrogen peroxide and acetic acid.



The reported study was supported by Russian Science Foundation Grant No. 16-13-10326. This work is part of GDRI “Catalytic biomass transformation” between France and Russia. The registration of IR and NMR spectra was performed using the spectrometers of Krasnoyarsk regional center for collective use of the SB RAS.

Supplementary material

226_2018_1029_MOESM1_ESM.docx (439 kb)
Supplementary material 1 (DOCX 439 kb)


  1. Anderson EM, Katahira R, Reed M, Resch MG, Karp EM, Beckham GT, Roman-Leshkov Yu (2016) Reductive catalytic of corn of corn stover lignin. ACS Sustain Chem Eng 4:6940–6950CrossRefGoogle Scholar
  2. Babkin VA, Ostroukhova LA, D’jachkova SA, Svyatkin YK, Babkin DV, Onuchin NA (1997) Waste-free complex processing of Siberian and Dahur larch biomass. Chem Sustain Dev 45:105Google Scholar
  3. Bessone M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:827–1870Google Scholar
  4. Boshkayeva AK, Omarova RA, Zharimbetov KB, Ibadullayeva GS, Bissenbaev EM, Zhaldybaev KK, Iskakova MK, Ross SA, Kozhamzharova AS (2016) Infrared spectroscopic study dihydroquercetin and its new substances with benzoyl chloride. Clin Med Res 5:1–7CrossRefGoogle Scholar
  5. Davis SC, Hay W, Pierce J (2014) Biomass in the energy industry: an introduction. BP p.l.c, LondonGoogle Scholar
  6. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) Fourier transform—material analysis. In Tech, RejekaGoogle Scholar
  7. Goellner EM, Utermoehlen J, Kramer R, Classen B (2011) Structure of arabinogalactan from Larixlaricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr Polym 86:1739–1744CrossRefGoogle Scholar
  8. Gromov NV, Taran OP, Sorokina KN, Mishchenko TI, Uthandi S, Parmon VN (2016) New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 1: methods for biomass activation. Catal Ind 8(2):176–186CrossRefGoogle Scholar
  9. Horhammer HS, Treasure TH, Gonzalez RW, Heiningen ARP (2014) Larch biorefinery: technical and economic evaluation. Ind Eng Chem Res 53:1206–1213CrossRefGoogle Scholar
  10. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12CrossRefPubMedGoogle Scholar
  11. Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203CrossRefGoogle Scholar
  12. Khlupova M, Vasil’eva I, Shumakovich G, Morozova O, Chertkov V, Shestakova A, Kisin A, Yaropolov A (2016) Laccase-mediated biotransformation of dihydroquercetin (taxifolin). J Mol Catal B Enzym 123:62–66CrossRefGoogle Scholar
  13. Kuznetsov BN, Taraban’ko VE, Kuznetsova SA (2008) New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass. Kinet Catal 49:517–526CrossRefGoogle Scholar
  14. Kuznetsov BN, Kuznetsova SA, Levdansky VA, Levdansky AV, Vasil’eva NY, Chesnokov NV, Ivanchenko NM, Djakovitch L, Pinel C (2015) Optimized methods for obtaining cellulose and cellulose sulfates from birch wood. Wood Sci Technol 49:825–843CrossRefGoogle Scholar
  15. Kuznetsov BN, Vasilyeva NY, Levdasky AV, Maximov AV, Kazachenko AS, Skvortsova GP, Djakovitch L, Pinel C (2016) Synthesis and study of copper-containing polymers of sulfated arabinogalactan. Chem Plant Raw Mater 4:49–55Google Scholar
  16. Kuznetsov BN, Chesnokov NV, Yatsenkova OV, Sharypov VI, Garyntseva NV, Ivanchenko NM, Yakovlev VA (2017) Green catalytic valorization of hardwood biomass into valuable chemicals with the use of solid catalysts. Wood Sci Technol 51:1189–1208CrossRefGoogle Scholar
  17. Kuznetsova SA, Kuznetsov BN, Aleksandrova NB, Danilov VG, Zhizhaev AM (2005) Obtaining arabinogalactan, dihydroquercetin and microcrystalline cellulose using mechanochemical activation. Chem Sustain Dev 13:261–268Google Scholar
  18. Li J, Zhang Q, Cui J, Ning Y, Wang F, Ouyang J, Wang J (2016) Characterization and oxidant activity of flash-assisted extracted dihydroquercetin from wood sawdust of Larixgmelinii using a response surface methodology. Int J Food Eng 12:587–597Google Scholar
  19. Ma C, Yang L, Wang W, Yang F, Zhao C, Zu Y (2012) Extraction of dihydroquercetin from Larixgmelinii with ultrasound-assisted and microwave-assisted alternant digestion. Int J Mol Sci 13:8789–8804CrossRefPubMedPubMedCentralGoogle Scholar
  20. Medvedeva EN, Babkin VA, Ostroukhova LA (2003) Arabinogalactan from larch—properties and usage perspectives. Chem Plant Raw Mater 1:27–37Google Scholar
  21. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597CrossRefGoogle Scholar
  22. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMedGoogle Scholar
  23. Park S, Baker JO, Himmel ME, Parilla PA, Jonson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on integrating cellulose performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ravber M, Knez Z, Skerget M (2015) Isolation of phenolic compounds from larch wood waste using pressurized hot water: extraction, analysis and economic evaluation. Cellulose 22:3359–3375CrossRefGoogle Scholar
  25. Rowell RM (2012) Handbook of wood chemistry and wood composites, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  26. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99CrossRefGoogle Scholar
  27. Sixta H (2006) Handbook of pulp. Wiley-VCH Verlag GmbH & Co, WeinheimCrossRefGoogle Scholar
  28. Sjöström E (1993) Wood chemistry—fundamentals and applications, 2nd edn. Academic Press, New WorkGoogle Scholar
  29. Sjöström E, Alen R (1999) Analytical methods of wood chemistry. Pulping and papermaking. Springer, BerlinCrossRefGoogle Scholar
  30. Sudakova IG, Kuznetsov BN, Garyntseva NV, Korolkova IV (2010) Composition and binding properties of lignins, obtained by oxidative delignification of abies, aspen and birch wood in the acetic acid medium. Chem Plant Raw Mater 3:55–60Google Scholar
  31. Sudakova IG, Garyntseva NV, Yatsenkova OV, Kuznetsov BN (2013) Optimization of aspen wood delignification by H2O2 with sulfuric acid catalyst. J Sib Fed Univ Chem 6:76–84Google Scholar
  32. Tappi (1998) Acid-insoluble lignin in wood and pulp. Standard T 222 Om-98. Technical association of the pulp and paper industry, Atlanta, p 5Google Scholar
  33. Tarabanko VE, Kaygorodov KL, Skiba EA, Tarabanko NV, Chelbina YV, Baybakova OV, Kuznetsov BN, Djakovitch L, Pinel C (2017) Processing pine wood into vanillin and glucose by sequential catalytic oxidation and enzymatic hydrolysis. J Wood Chem Technol 37:43–51CrossRefGoogle Scholar
  34. Van den Bosch S, Schutyser W, Vanholme R, Drissen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8:1748–1763CrossRefGoogle Scholar
  35. Vasilyeva NY, Levdansky AV, Kazachenko AS, Skvortsova GP, Kuznetsov BN (2016) Modification of sulfated arabinogalactan with amino acids by ion exchange method. J Sib Fed Univ Chem 9:20–28CrossRefGoogle Scholar
  36. Willför S, Sundberg A, Pranovich A, Holmbom B (2005) Polysaccharides in some industrially important hardwood species. Wood Sci Technol 39:601–617CrossRefGoogle Scholar
  37. Xu J, Xie X, Wang J, Jiang J (2016) Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chem 18:3124–3138CrossRefGoogle Scholar
  38. Zhang X, Lei H, Zhu L, Wei Y, Liu Y, Yadavalli G, Yan D, Wu J, Chen S (2015) Production of renewable jet fuel range alkanes and aromatics via integrated catalytic processes of intact biomass. Fuel 160:375–385CrossRefGoogle Scholar
  39. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 3:51–68Google Scholar
  40. Zhou XL, Sun PN, Bucheli P, Huang TH, Wang D (2009) FT-IR methodology for quality control of arabinogalactan protein (AGP) extracted from green tea (Camellia sinensis). J Agric Food Chem 57:5121–5128CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. N. Kuznetsov
    • 1
    • 2
    Email author
  • I. G. Sudakova
    • 1
  • N. V. Garyntseva
    • 1
  • V. A. Levdansky
    • 1
  • N. M. Ivanchenko
    • 1
  • A. V. Pestunov
    • 1
  • L. Djakovitch
    • 3
  • C. Pinel
    • 3
  1. 1.Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.IRCELYONVilleurbanne Cedex, LyonFrance

Personalised recommendations