Wood Science and Technology

, Volume 52, Issue 4, pp 957–969 | Cite as

Sorption surfaces and energies of untreated and thermally modified wood evaluated by means of excess surface work (ESW)

  • Mario Zauer
  • Carsten Prinz
  • Jürgen Adolphs
  • Franziska Emmerling
  • André Wagenführ


Water vapor sorption surface areas and sorption energies of untreated and thermally modified Norway spruce [Picea abies (L.) Karst.], sycamore maple (Acer pseudoplatanus L.) and European ash (Fraxinus excelcior L.) were investigated by means of dynamic vapor sorption (DVS) measurements and excess surface work (ESW) evaluation method, respectively. Adsorption and desorption experiments in the hygroscopic range and desorption tests from water saturation were conducted. Thermodynamically, ESW is the sum of the surface free energy and the isothermal isobaric work of sorption. From the amount adsorbed in the first minimum a specific surface area similar to the BET surface area can be obtained. The results show that untreated spruce has a significantly higher specific water vapor sorption surface and sorption energy compared to both hardwoods maple and ash. Thermal modification of the woods leads to a significant reduction of water vapor sorption surface and sorption energy. The determined surface area and energy are higher in desorption direction than in adsorption direction, whereby the highest values in desorption direction from water saturation, especially for maple and ash, were obtained. The surface areas calculated by means of the ESW method are similar to the surface areas calculated by means of the BET method, particularly in adsorption direction.



  1. Adolphs J (2007) Excess surface work-A modelless way of getting surface energies and specific surface areas directly from sorption isotherms. Appl Sur Sci 253:5645–5649CrossRefGoogle Scholar
  2. Adolphs J, Setzer MJ (1996a) A model to describe adsorption isotherms. J Colloid Interface Sci 180:70–76CrossRefGoogle Scholar
  3. Adolphs J, Setzer MJ (1996b) Energetic Classification of Adsorption Isotherms. J Colloid Interface Sci 184:443–448CrossRefPubMedGoogle Scholar
  4. Adolphs J, Setzer MJ (1998) Description of gas adsorption isotherms on porous and dispersed systems with the excess surface work model. J Colloid Interface Sci 207:349–354CrossRefPubMedGoogle Scholar
  5. Bächle H, Zimmer B, Windeisen E, Wegener G (2010) Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy. Wood Sci Technol 44:421–433CrossRefGoogle Scholar
  6. Borrega M, Niemelä K, Sixta H (2013) Effect of hydrothermal treatment intensity on the formation of degradation products from birchwood. Holzforschung 67:871–879CrossRefGoogle Scholar
  7. Bourgois J, Guyonnet R (1988) Characterization and analysis of torrefied wood. Wood Sci Technol 22:143–155CrossRefGoogle Scholar
  8. Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  9. Churaev NV, Setzer MJ, Adolphs J (1998) A model to describe adsorption isotherms. J Colloid Interface Sci 197:327–333CrossRefPubMedGoogle Scholar
  10. De Boer JH, Zwicker CZ (1929) Adsorption als folge von polarisation. Die adsorptionsisotherme (adsorption as a result of polarization. The adsorption isotherms). Z Physik Chem B3:407–418 (In German) Google Scholar
  11. Derjaguin BV, Churaev NV, Muller VM (1987) Surface forces. Consultants Bureau, New YorkCrossRefGoogle Scholar
  12. Engelund ET, Thygesen LG, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood-water interactions. Wood Sci Technol 47:141–161CrossRefGoogle Scholar
  13. Engelund ET, Thygesen LG, Burgert I (2017) Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 24:2375–2384CrossRefGoogle Scholar
  14. Enke D, Rückriem M, Schreiber A, Adolphs J (2010) Water vapor sorption on hydrophilic and hydrophobic nanoporous materials. Appl Sur Sci 256:5482–5485CrossRefGoogle Scholar
  15. Fengel D, Wegener G (2003) Wood: chemistry, ultrastructure. Verlag Kessel, München, ReactionGoogle Scholar
  16. Fernandes Diniz JMB, Gil MH, Castro JAAM (2004) Hornification-its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494CrossRefGoogle Scholar
  17. Herrera R, Erdocia X, Labidi J, Llano-Ponte R (2015a) Chemical analysis of industrial-scale hydrothermal wood degraded by wood-rotting basidiomycetes and its action mechanisms. Polym Degrad Stab 117:37–45CrossRefGoogle Scholar
  18. Herrera R, Muszynska M, Krystofiak T, Labidi J (2015b) Comparative evaluation of different thermally modified wood samples finishing with UV-curable and water borne coatings. Appl Sur Sci 357:1444–1453CrossRefGoogle Scholar
  19. Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, ChichesterCrossRefGoogle Scholar
  20. Hill CAS, Norton AJ, Newmann G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514CrossRefGoogle Scholar
  21. Hill CAS, Ramsay J, Keating B, Laine K, Rautkari L, Hughes M, Constant B (2012) The water vapour sorption properties of thermally modified and densified wood. J Mater Sci 47:3191–3197CrossRefGoogle Scholar
  22. Himmel S, Mai C (2016) Water vapour sorption of wood modified by acetylation and formalization-analysed ba a sorption kinetics model and thermodynamic considerations. Holzforschung 70:203–213CrossRefGoogle Scholar
  23. Hosseinpourpia R, Adamopoulos S, Holstein N, Mai C (2017) Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus sylvestris L.) wood pre-treated with proton acid. Polym Degrad Stab 138:161–168CrossRefGoogle Scholar
  24. ISO 9277 (2010) Determination of the specific area of solids by gas adsorption—BET method. Beuth Verlag, BerlinGoogle Scholar
  25. Olek W, Bonarski JT (2014) Effects of thermal modification on wood ultrastructure analyzed with crystallographic texture. Holzforschung 68:721–726CrossRefGoogle Scholar
  26. Olek W, Majka J, Czaikowski Ł (2013) Sorption isotherms of thermally modified wood. Holzforschung 67:183–191CrossRefGoogle Scholar
  27. Peschel G, Adlfinger KH (1971) Thermodynamic investigations of thin layers between solid surfaces. Zeit Naturforsch 26A:705–715Google Scholar
  28. Pètrissans A, Younsi R, Chaoch M, Gèrardin P, Pètrissans M (2012) Experimental and numerical analysis of wood thermodegradation: mass loss kinetics. J Therm Anal Calorim 109:907–914CrossRefGoogle Scholar
  29. Pfriem A, Zauer M, Wagenführ A (2010) Alteration of the unsteady sorption behaviour of maple (Acer pseudoplatanus L.) and spruce (Picea abies (L.) Karst.) due to thermal modification. Holzforschung 64:235–241CrossRefGoogle Scholar
  30. Popescu CM, Hill CAS (2013) The water vapour adsorption-desorption behaviour of naturally aged Tilia codorata Mill. wood. Polym Degrad Stab 98:1804–1813CrossRefGoogle Scholar
  31. Repellin V, Guyonnet R (2005) Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung 59:28–34CrossRefGoogle Scholar
  32. Roffael E, Kraft R (2012) Influence of thermal wood modification on the water retention value (WRV). Eur J Wood Prod 70:393–395CrossRefGoogle Scholar
  33. Rübner K, Prinz C, Adolphs J, Hempel S, Schell A (2015) Microstructural characterisation of lightweight granules made from masonry rubble. Micropor Mesopor Mater 209:113–121CrossRefGoogle Scholar
  34. Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16:975–982CrossRefGoogle Scholar
  35. Sandermann W, Augustin H (1963) Chemical investigations on the thermal decomposition of wood. Part I: stand of research. Holz Roh Werkst 21:256–265CrossRefGoogle Scholar
  36. Skaar C (1988) Wood-water relations. Springer, BerlinCrossRefGoogle Scholar
  37. Weiland JJ, Guyonnet R (2003) Study of chemical modification and fungi degradation of thermally modified wood using DRFIT spectroscopy. Holz Roh Werkst 61:216–220CrossRefGoogle Scholar
  38. Windeisen E, Strobel C, Wegener G (2007) Chemical changes during the production of thermo- treated beech wood. Wood Sci Technol 41:523–536CrossRefGoogle Scholar
  39. Zaman A, Alèn R, Kotilainen R (2000) Thermal behavior of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200–230°C. Wood Fiber Sci 32:138–143Google Scholar
  40. Zauer M, Kowalewski A, Oberer I, Sproßmann R, Wagenführ A (2015) Development of thermally modified wood to substitute tropical hardwood for the use in acoustic guitars. Proceedings of the Eighth European Conference on Wood Modification 8:96–99Google Scholar
  41. Zauer M, Kowalewski A, Sproßmann R, Stonjek H, Wagenführ A (2016) Thermal modification of European beech at relatively mild temperatures for the use in electric bass guitars. Eur J Wood Prod 74:43–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
  2. 2.Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  3. 3.Porotec GmbHHofheim/TsGermany

Personalised recommendations