Skip to main content

Advertisement

Log in

Sorption surfaces and energies of untreated and thermally modified wood evaluated by means of excess surface work (ESW)

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Water vapor sorption surface areas and sorption energies of untreated and thermally modified Norway spruce [Picea abies (L.) Karst.], sycamore maple (Acer pseudoplatanus L.) and European ash (Fraxinus excelcior L.) were investigated by means of dynamic vapor sorption (DVS) measurements and excess surface work (ESW) evaluation method, respectively. Adsorption and desorption experiments in the hygroscopic range and desorption tests from water saturation were conducted. Thermodynamically, ESW is the sum of the surface free energy and the isothermal isobaric work of sorption. From the amount adsorbed in the first minimum a specific surface area similar to the BET surface area can be obtained. The results show that untreated spruce has a significantly higher specific water vapor sorption surface and sorption energy compared to both hardwoods maple and ash. Thermal modification of the woods leads to a significant reduction of water vapor sorption surface and sorption energy. The determined surface area and energy are higher in desorption direction than in adsorption direction, whereby the highest values in desorption direction from water saturation, especially for maple and ash, were obtained. The surface areas calculated by means of the ESW method are similar to the surface areas calculated by means of the BET method, particularly in adsorption direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adolphs J (2007) Excess surface work-A modelless way of getting surface energies and specific surface areas directly from sorption isotherms. Appl Sur Sci 253:5645–5649

    Article  CAS  Google Scholar 

  • Adolphs J, Setzer MJ (1996a) A model to describe adsorption isotherms. J Colloid Interface Sci 180:70–76

    Article  CAS  Google Scholar 

  • Adolphs J, Setzer MJ (1996b) Energetic Classification of Adsorption Isotherms. J Colloid Interface Sci 184:443–448

    Article  PubMed  CAS  Google Scholar 

  • Adolphs J, Setzer MJ (1998) Description of gas adsorption isotherms on porous and dispersed systems with the excess surface work model. J Colloid Interface Sci 207:349–354

    Article  PubMed  CAS  Google Scholar 

  • Bächle H, Zimmer B, Windeisen E, Wegener G (2010) Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy. Wood Sci Technol 44:421–433

    Article  CAS  Google Scholar 

  • Borrega M, Niemelä K, Sixta H (2013) Effect of hydrothermal treatment intensity on the formation of degradation products from birchwood. Holzforschung 67:871–879

    Article  CAS  Google Scholar 

  • Bourgois J, Guyonnet R (1988) Characterization and analysis of torrefied wood. Wood Sci Technol 22:143–155

    Article  CAS  Google Scholar 

  • Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Churaev NV, Setzer MJ, Adolphs J (1998) A model to describe adsorption isotherms. J Colloid Interface Sci 197:327–333

    Article  PubMed  CAS  Google Scholar 

  • De Boer JH, Zwicker CZ (1929) Adsorption als folge von polarisation. Die adsorptionsisotherme (adsorption as a result of polarization. The adsorption isotherms). Z Physik Chem B3:407–418 (In German)

    Google Scholar 

  • Derjaguin BV, Churaev NV, Muller VM (1987) Surface forces. Consultants Bureau, New York

    Book  Google Scholar 

  • Engelund ET, Thygesen LG, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood-water interactions. Wood Sci Technol 47:141–161

    Article  CAS  Google Scholar 

  • Engelund ET, Thygesen LG, Burgert I (2017) Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 24:2375–2384

    Article  CAS  Google Scholar 

  • Enke D, Rückriem M, Schreiber A, Adolphs J (2010) Water vapor sorption on hydrophilic and hydrophobic nanoporous materials. Appl Sur Sci 256:5482–5485

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (2003) Wood: chemistry, ultrastructure. Verlag Kessel, München, Reaction

    Google Scholar 

  • Fernandes Diniz JMB, Gil MH, Castro JAAM (2004) Hornification-its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494

    Article  CAS  Google Scholar 

  • Herrera R, Erdocia X, Labidi J, Llano-Ponte R (2015a) Chemical analysis of industrial-scale hydrothermal wood degraded by wood-rotting basidiomycetes and its action mechanisms. Polym Degrad Stab 117:37–45

    Article  CAS  Google Scholar 

  • Herrera R, Muszynska M, Krystofiak T, Labidi J (2015b) Comparative evaluation of different thermally modified wood samples finishing with UV-curable and water borne coatings. Appl Sur Sci 357:1444–1453

    Article  CAS  Google Scholar 

  • Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, Chichester

    Book  Google Scholar 

  • Hill CAS, Norton AJ, Newmann G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514

    Article  CAS  Google Scholar 

  • Hill CAS, Ramsay J, Keating B, Laine K, Rautkari L, Hughes M, Constant B (2012) The water vapour sorption properties of thermally modified and densified wood. J Mater Sci 47:3191–3197

    Article  CAS  Google Scholar 

  • Himmel S, Mai C (2016) Water vapour sorption of wood modified by acetylation and formalization-analysed ba a sorption kinetics model and thermodynamic considerations. Holzforschung 70:203–213

    Article  CAS  Google Scholar 

  • Hosseinpourpia R, Adamopoulos S, Holstein N, Mai C (2017) Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus sylvestris L.) wood pre-treated with proton acid. Polym Degrad Stab 138:161–168

    Article  CAS  Google Scholar 

  • ISO 9277 (2010) Determination of the specific area of solids by gas adsorption—BET method. Beuth Verlag, Berlin

    Google Scholar 

  • Olek W, Bonarski JT (2014) Effects of thermal modification on wood ultrastructure analyzed with crystallographic texture. Holzforschung 68:721–726

    Article  CAS  Google Scholar 

  • Olek W, Majka J, Czaikowski Ł (2013) Sorption isotherms of thermally modified wood. Holzforschung 67:183–191

    Article  CAS  Google Scholar 

  • Peschel G, Adlfinger KH (1971) Thermodynamic investigations of thin layers between solid surfaces. Zeit Naturforsch 26A:705–715

    Google Scholar 

  • Pètrissans A, Younsi R, Chaoch M, Gèrardin P, Pètrissans M (2012) Experimental and numerical analysis of wood thermodegradation: mass loss kinetics. J Therm Anal Calorim 109:907–914

    Article  CAS  Google Scholar 

  • Pfriem A, Zauer M, Wagenführ A (2010) Alteration of the unsteady sorption behaviour of maple (Acer pseudoplatanus L.) and spruce (Picea abies (L.) Karst.) due to thermal modification. Holzforschung 64:235–241

    Article  CAS  Google Scholar 

  • Popescu CM, Hill CAS (2013) The water vapour adsorption-desorption behaviour of naturally aged Tilia codorata Mill. wood. Polym Degrad Stab 98:1804–1813

    Article  CAS  Google Scholar 

  • Repellin V, Guyonnet R (2005) Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung 59:28–34

    Article  CAS  Google Scholar 

  • Roffael E, Kraft R (2012) Influence of thermal wood modification on the water retention value (WRV). Eur J Wood Prod 70:393–395

    Article  Google Scholar 

  • Rübner K, Prinz C, Adolphs J, Hempel S, Schell A (2015) Microstructural characterisation of lightweight granules made from masonry rubble. Micropor Mesopor Mater 209:113–121

    Article  CAS  Google Scholar 

  • Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16:975–982

    Article  CAS  Google Scholar 

  • Sandermann W, Augustin H (1963) Chemical investigations on the thermal decomposition of wood. Part I: stand of research. Holz Roh Werkst 21:256–265

    Article  CAS  Google Scholar 

  • Skaar C (1988) Wood-water relations. Springer, Berlin

    Book  Google Scholar 

  • Weiland JJ, Guyonnet R (2003) Study of chemical modification and fungi degradation of thermally modified wood using DRFIT spectroscopy. Holz Roh Werkst 61:216–220

    Article  CAS  Google Scholar 

  • Windeisen E, Strobel C, Wegener G (2007) Chemical changes during the production of thermo- treated beech wood. Wood Sci Technol 41:523–536

    Article  CAS  Google Scholar 

  • Zaman A, Alèn R, Kotilainen R (2000) Thermal behavior of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200–230°C. Wood Fiber Sci 32:138–143

    CAS  Google Scholar 

  • Zauer M, Kowalewski A, Oberer I, Sproßmann R, Wagenführ A (2015) Development of thermally modified wood to substitute tropical hardwood for the use in acoustic guitars. Proceedings of the Eighth European Conference on Wood Modification 8:96–99

  • Zauer M, Kowalewski A, Sproßmann R, Stonjek H, Wagenführ A (2016) Thermal modification of European beech at relatively mild temperatures for the use in electric bass guitars. Eur J Wood Prod 74:43–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Zauer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zauer, M., Prinz, C., Adolphs, J. et al. Sorption surfaces and energies of untreated and thermally modified wood evaluated by means of excess surface work (ESW). Wood Sci Technol 52, 957–969 (2018). https://doi.org/10.1007/s00226-018-1021-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-018-1021-2

Navigation