Advertisement

Wood Science and Technology

, Volume 52, Issue 3, pp 839–854 | Cite as

Phase-retrieval-based synchrotron X-ray micro-tomography for 3D structural characterization and quantitative analysis of agalloch eaglewood

  • Huiqiang Liu
  • Fanghua Lin
  • Jianhuan Lin
  • Kaisa Sulaiman
  • Tiqiao Xiao
  • Yun Sun
  • Yuan Pang
  • Haigang Liu
Original
  • 121 Downloads

Abstract

The propagation-based phase-contrast computed micro-tomography (PPCT) dominates the nondestructive three-dimensional inner structure measurement in biological and soft material research, especially for the synchrotron-based application. It is essential for botanic assessments in plant physiology and eco-physiology to quantitatively visualize microstructures and tiny density variations in wood tissues. An experimental study of synchrotron-based X-ray PPCT combined with the presented phase-attenuation-duality phase retrieval (PR) algorithm was implemented with the agalloch eaglewood specimens at different stages. Due to the striking contrast-to-noise ratio and density resolution of the PR-PPCT technique, the experimental results successfully visualized the three-dimensional morphological characterization of different tissues of agalloch eaglewood specimens, and the feature distribution of eaglewood resin was quantitatively segmented and measured for statistic analysis of component volume and size of eaglewood growth. It was demonstrated that the PR-PPCT technique has a great potential for 3D visualization and quantitative analysis of structural characteristics of agalloch eaglewood, associated with resin formation and distribution in specimens, and it is helpful for the wood science and application.

Notes

Acknowledgements

The authors would like to thank the staff of BL13W1 at SSRF. This work was supported by the National Natural Science Foundation of China (Grant Nos. 81660306, 11475248, 11505277).

References

  1. Barden A (2000) Heart of the matter: agarwood use and trade and CITES implementation for Aquilaria malaccensis. Traffic International, Cambridge. ISBN 1-85850-177-6Google Scholar
  2. Broad S (1995) Agarwood harvesting in Vietnam. Traffic Bull 88:15–96Google Scholar
  3. Chen H-Q, Wei J-H, Yang J-S, Zhang Z, Yang Y, Gao Z-H, Sui C, Gong B (2012) Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chem Biodivers 9(2):236–250CrossRefPubMedGoogle Scholar
  4. Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17CrossRefGoogle Scholar
  5. Davis JR, Lerdin A, Wells P, Ilic J (1991) X-ray microtomography of wood. J Inst Wood Sci 12:259–261Google Scholar
  6. Groso A, Abela R, Stampanoni M (2006) Implementation of a fast method for high resolution phase contrast tomography. Opt Express 14:8103–8110CrossRefPubMedGoogle Scholar
  7. Guigay JP, Langer M, Boistel R, Cloetens P (2007) Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region. Opt Lett 32:1617–1619CrossRefPubMedGoogle Scholar
  8. Gureyev TE, Pogany A, Paganin DM, Wilkins SW (2004) Linear algorithms for phase retrieval in the Fresnel region. Opt Commun 231:53–70CrossRefGoogle Scholar
  9. Gureyev TE, Paganin DM, Myers GR, Nesterets YI, Wilkins SW (2006) Phase-and-amplitude computer tomography. Appl Phys Lett 89:034102CrossRefGoogle Scholar
  10. Lancaster C, Espinoza E (2012) Evaluating agarwood products for 2-(2-phenylethyI) chromones suing direct analysis in real time time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 26(23):2649–2656CrossRefPubMedGoogle Scholar
  11. Lang S, Zanette I, Dominietto M, Langer M, Rack A, Schulz G, Le Duc G, David C, Mohr J, Pfeiffer F, Muller B, Weitkamp T (2014) Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue. J Appl Phys 116:154903CrossRefGoogle Scholar
  12. Langer M, Cloetens P, Peyrin F (2010) Regularization of phase retrieval with phase-attenuation duality prior for 3-D holotomography. IEEE Trans Image Process 19(9):2428–2436CrossRefPubMedGoogle Scholar
  13. Liu HQ, Ren Y, Guo H, Xue Y, Xie H, Xiao TQ, Wu X (2012) Phase retrieval for hard X-ray computed tomography of samples with hybrid compositions. Chin Opt Lett 10:121101CrossRefPubMedPubMedCentralGoogle Scholar
  14. Liu Y, Nelson J, Holzner C, Andrews JC, Pianetta P (2013) Recent advances in Synchrotron-based hard X-ray phase contrast imaging. J Phys D Appl Phys 46:494001CrossRefGoogle Scholar
  15. Liu HQ, Wu XZ, Xiao TQ (2015a) Optimization of reconstructed quality of hard X-ray phase micro-tomography. Appl Opt 54:5610CrossRefPubMedPubMedCentralGoogle Scholar
  16. Liu HQ, Wu XZ, Xiao TQ (2015b) Technical Note: Synchrotron-based high energy X-ray phase sensitive micro-tomography for biomedical research. Med Phys 42(10):5595–5603CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liu HQ, Xiao TQ, Xie H, Fu Y, Zhang X, Fan X (2017) Nondestructive material characterization of meteorites with synchrotron-based high energy X-ray phase micro-computed tomography. J Phys D Appl Phys 50:055301CrossRefGoogle Scholar
  18. Long C, Li S, Long B, Shi Y, Liu B (2009) Medical plants used by the Yi ethnic group: a case study in central Yunnan. J Ethnobiol Ethnomed 5:13CrossRefPubMedPubMedCentralGoogle Scholar
  19. Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–12CrossRefGoogle Scholar
  20. Mayo SC, Chen F, Evans R (2010) Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. J Struct Biol 171:182–188CrossRefPubMedGoogle Scholar
  21. Myers GR, Gureyev TE, Paganin DM (2007) Stability of phase-contrast tomography. J Opt Soc Am A 24:2516CrossRefGoogle Scholar
  22. Naef R (2011) The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour Fragr J 26(2):73–87CrossRefGoogle Scholar
  23. Ng LT, Chang YS, Kadir AA (1997) A review on agar (gaharu) producing Aquilaria species. J Trop For Prod 2(2):272–285Google Scholar
  24. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40CrossRefPubMedGoogle Scholar
  25. Trtik P, Dual J, Keunecke D, Mannes D, Niemz P, Stahli P, Kaestner A, Groso A, Stampanoni M (2007) 3D imaging of microstructure of spruce wood. J Struct Biol 159:46–55CrossRefPubMedGoogle Scholar
  26. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase contrast imaging using polychromatic hard X-rays. Nature 384:335–338CrossRefGoogle Scholar
  27. Wu X, Liu H (2003) A general theoretical formalism for X-ray phase contrast imaging. J X-ray Sci Technol 11:33–42Google Scholar
  28. Wu X, Liu H, Yan A (2005) X-ray phase-attenuation duality and phase retrieval. Opt Lett 50(4):379–381CrossRefGoogle Scholar
  29. Zhou M, Wang H, Suolangjaba Kou J, Yu B (2008) Antinociceptive and anti-inflamatory activities of Aquilaria sinensis Gilg. Leaves extract. J Ethnopharmacol 117:345–350CrossRefPubMedGoogle Scholar
  30. Zhou T, Larsson DH, Stampanoni M, Hertz HM (2014) Comparison of propagation-based X-ray phase-contrast imaging techniques with a liquid-metal-jet source. Proc SPIE 9033(1):131–135Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Huiqiang Liu
    • 1
  • Fanghua Lin
    • 2
    • 3
  • Jianhuan Lin
    • 4
  • Kaisa Sulaiman
    • 2
  • Tiqiao Xiao
    • 5
  • Yun Sun
    • 6
  • Yuan Pang
    • 7
  • Haigang Liu
    • 5
  1. 1.College of Medical Engineering and TechnologyXinjiang Medical UniversityUrumqiChina
  2. 2.Xinjiang Institute of Traditional Chinese Medicine and Ethno-MedicineUrumqiChina
  3. 3.School of Life ScienceHuizhou UniversityHuizhouChina
  4. 4.Huizhou Xinyuan Eaglewood Plantation Development Co. Ltd.HuizhouChina
  5. 5.SSRF, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  6. 6.College of Chinese MedicineXinjiang Medical UniversityUrumqiChina
  7. 7.Chinese Medicine HospitalXinjiang Medical UniversityUrumqiChina

Personalised recommendations