Advertisement

Wood Science and Technology

, Volume 52, Issue 2, pp 555–565 | Cite as

Characterization of cellulose nanocrystal with cellulose II polymorph from primary sludge and its application to PVA nanocomposites

  • Iwan Risnasari
  • Fauzi Febrianto
  • Nyoman Jaya Wistara
  • Sucahyo Sadiyo
  • Siti Nikmatin
  • Yoshikuni Teramoto
  • Seung Hwan Lee
  • Jae Hyuk Jang
  • Wahyu Hidayat
  • Nam Hun Kim
Original
  • 197 Downloads

Abstract

Cellulose nanocrystals with cellulose II polymorph (CNC-II) were obtained from primary sludge fiber (PSF) in a pulp and paper mill by sulfuric acid hydrolysis after purification to remove inorganic materials and lignin. The CNC-IIs obtained were applied as reinforcing fillers for polyvinyl alcohol (PVA). Characterization of CNC-IIs was performed using FTIR spectroscopy and X-ray diffraction. The morphology, conductivity, and tensile properties of CNC-IIs-reinforced PVA nanocomposites were also investigated. Purification treatment effectively reduced non-cellulosic material in the sludge, increasing the cellulose content from 39.87 to 76.34%. The conductivity and tensile properties of the PVA/CNC-II nanocomposite was better than those of neat PVA and PVA/PSF composite.

Notes

Acknowledgements

The authors would like to thank the Korean Forest Service for supporting this study.

References

  1. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRefPubMedGoogle Scholar
  2. Browning BL (1967) Methods of wood chemistry, vol II. Wiley, New YorkGoogle Scholar
  3. Dai D, Fan M, Collins P (2013) Fabrication of nanocelluloses from hemp fibers and their application for the reinforcement of hemp fiber. Ind Crops Prod 44:192–199CrossRefGoogle Scholar
  4. Fahma F, Hori N, Iwamoto S, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985CrossRefGoogle Scholar
  5. Fahma F, Hori N, Iwamoto S, Iwata T, Takemura A (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450CrossRefGoogle Scholar
  6. Fortunatia E, Puglia D, Luzi F, Santulli C, Kenny JM, Torrea L (2013a) Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohydr Polym 97:825–836CrossRefGoogle Scholar
  7. Fortunatia E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013b) Cellulose nanocrystals extracted from okar fibers in PVA nanocomposite. J Appl Polym Sci 128(5):3220–3230CrossRefGoogle Scholar
  8. Girones J, Pelach MA, Pardini G, Mutje P, Vilaseca F (2010) Recycling of paper mill sludge as filler/reinforcement in polypropylene composites. J Polym Environ 18:407–412CrossRefGoogle Scholar
  9. Gomez JA, de Alda O (2008) Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resour Conserv Recycl 52(7):965–972CrossRefGoogle Scholar
  10. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99CrossRefGoogle Scholar
  11. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238CrossRefGoogle Scholar
  12. Khiar ASA, Arof AK (2009) Conductivity studies of starch-based polymer electrolytes. Ionics 16(2):123–129CrossRefGoogle Scholar
  13. Kim NH, Sugiyama J, Okano T (1990) X-ray and electron diffraction study of Na-cellulose I: formation and its reconversion back to cellulose I. Mokuzai Gakkaishi 36(2):120–125Google Scholar
  14. Leao AL, Cherian BM, Souza SFD, Sain M, Narine S, Caldeira MS, Toledo MAS (2012) Use of primary sludge from pulp and papermills for nanocomposites. Mol Cryst Liq Cryst 556:254–263CrossRefGoogle Scholar
  15. Mehmood S, Khaliq A, Ranjha SA (2010) The use of post consumer wood waste for the production of wood plastic composites: a review. In: Third international symposium on energy from biomass and waste, Venice, Italy, 8–11 Nov 2010Google Scholar
  16. Neto WPF, Silverio HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind Crops Prod 42:480–488CrossRefGoogle Scholar
  17. Nishio Y, Manley RSJ (1988) Cellulose/poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules 21(5):1270–1277CrossRefGoogle Scholar
  18. Nishio Y, Haratani T, Takahashi T (1989) Cellulose/poly(vinyl alcohol) blends: an estimation of thermodynamic polymer–polymer interaction by melting point depression analysis. Macromolecules 22(5):2547–2549CrossRefGoogle Scholar
  19. Peresin MS, Habibi Y, Zoppe HJ, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681CrossRefGoogle Scholar
  20. Roohani D, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498CrossRefGoogle Scholar
  21. TAPPI Method T204 om-88 (1988a) Solvent extractives of wood and pulp. TAPPI Press, AtlantaGoogle Scholar
  22. TAPPI Method T222 om-88 (1988b) Acid-insoluble lignin in wood and pulp. TAPPI Press, AtlantaGoogle Scholar
  23. TAPPI Method T211 om-93 (1993) Ash in wood, pulp, paper and paperboard: combustion at 525°C. TAPPI Press, AtlantaGoogle Scholar
  24. Yue Y (2011) A comparative study of cellulose I and II fibers and nanocrystals. Master thesis, School of Renewable Natural Resources, Louisiana State University, Louisiana, pp 24–61Google Scholar
  25. Zugenmaier P (2008) Crystalline cellulose and derivatives: characterization and structures. Springer, BerlinCrossRefGoogle Scholar
  26. Zuluaga R, Putaux JL, Cruz J, Velez J, Mondragon I, Ganan P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76(1):51–59CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Iwan Risnasari
    • 1
  • Fauzi Febrianto
    • 2
  • Nyoman Jaya Wistara
    • 2
  • Sucahyo Sadiyo
    • 2
  • Siti Nikmatin
    • 3
  • Yoshikuni Teramoto
    • 4
  • Seung Hwan Lee
    • 5
  • Jae Hyuk Jang
    • 5
  • Wahyu Hidayat
    • 5
    • 6
  • Nam Hun Kim
    • 5
  1. 1.Faculty of ForestryUniversity of Sumatera UtaraMedanIndonesia
  2. 2.Department of Forest Products, Faculty of ForestryBogor Agricultural UniversityBogorIndonesia
  3. 3.Department of Physics, Faculty of Mathematics and Natural ScienceBogor Agricultural UniversityBogorIndonesia
  4. 4.Faculty of Applied Biological SciencesGifu UniversityGifuJapan
  5. 5.Department of Forest Biomaterials Engineering, College of Forest and Environmental ScienceKangwon National UniversityChuncheonKorea
  6. 6.Department of Forestry, Faculty of AgricultureLampung UniversityBandar LampungIndonesia

Personalised recommendations