Advertisement

Wood Science and Technology

, Volume 51, Issue 5, pp 1249–1258 | Cite as

Application of artificial neural networks as a predictive method to differentiate the wood of Pinus sylvestris L. and Pinus nigra Arn subsp. salzmannii (Dunal) Franco

  • Luis G. Esteban
  • Paloma de Palacios
  • María Conde
  • Francisco G. Fernández
  • Alberto García-Iruela
  • Marta González-Alonso
Original

Abstract

The wood structure of conifers in general and the Pinus genus in particular makes species differentiation by traditional qualitative or quantitative methods complicated or even impossible at times. Pinus sylvestris L. and Pinus nigra Arn subsp. salzmannii (Dunal) Franco are a clear example of this because they cannot be differentiated by traditional methods. However, correctly identifying these species is very important in some cases as they are extensively used in a large variety of fields because of their wide distribution range in the forests of Europe and Asia. Using trees selected from the same forest to minimise the influence of site and performing a biometric study of 10 growth rings from the same climate period, a feedforward multilayer perceptron network trained by the resilient backpropagation algorithm was designed to determine whether the network could be used to differentiate these species with a high degree of probability. The artificial neural network achieved 90.4% accuracy in the training set, 81.6% in the validation set and 81.2% in the testing set. This result justifies the use of this tool for wood identification at anatomical level.

References

  1. Avramidis S, Iliadis L (2005a) Predicting wood thermal conductivity using artificial neural networks. Wood Fiber Sci 37:682–690Google Scholar
  2. Avramidis S, Iliadis L (2005b) Wood-water sorption isotherm prediction with artificial neural networks: a preliminary study. Holzforschung 59:336–341Google Scholar
  3. Batista JW, Monteiro TC, Rauber VT, Alves JA, Ribeiro A (2011) The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (Cites Appendix II). IAWA J 32:285–296CrossRefGoogle Scholar
  4. Burks TF, Shearer SA, Heath JR, Donohue KD (2005) Evaluation of neural network classifiers for weed species discrimination. Biosyst Eng 91:293–304CrossRefGoogle Scholar
  5. Catalán G, Gil P, Galera RM, Martín S, Agúndez D, Alía R (1991) Las regiones de procedencia de Pinus sylvestris L. y Pinus nigra Arn. subsp. salzmannii (Dunal) Franco en España [The regions of provenance of Pinus sylvestris L. and Pinus nigra Arn. subsp. salzmannii (Dunal) Franco in Spain]. Instituto Nacional para la Conservación de la Naturaleza, MadridGoogle Scholar
  6. Clark JY (2003) Artificial neural networks for species identification by taxonomists. Biosystems 72:131–147CrossRefPubMedGoogle Scholar
  7. Clark JY, Corney D, Tang HL (2012) Automated plant identification using artificial neural networks. In: Proceedings of the IEEE Symposium on computational intelligence in bioinformatics and computational biology (CIBCB), San Diego (CA)Google Scholar
  8. Cook DF, Whittaker AD (1992) Neural network models for prediction of process parameters in wood products manufacturing. In: Proceedings of the 1st industrial engineering research conference, Chicago (IL)Google Scholar
  9. Demuth H, Beale M, Hagan M (2002) Neural network toolbox for use with MATLAB. User’s Guide. The Math Works Inc., Natick (MA)Google Scholar
  10. Diamantopoulou MJ (2005) Artificial neural networks as an alternative tool in pine bark volume estimation. Comput Electron Agric 48:235–244CrossRefGoogle Scholar
  11. Drake PR, Packianather MS (1998) A decision tree of neural networks for classifying images of wood veneer. Int J Adv Manuf Technol 14:280–285CrossRefGoogle Scholar
  12. Esteban LG, Guindeo A (1988) Anatomía e identificación de maderas de coníferas españolas. [Anatomy and identification of Spanish conifer woods]. AITIM, MadridGoogle Scholar
  13. Esteban LG, Fernández FG, de Palacios P, Conde M (2009a) Artificial neural networks in variable process control: application in particleboard manufacture. Inv Agrar-Sist Recur For 18:92–100Google Scholar
  14. Esteban LG, Fernández FG, de Palacios P, Romero RM, Cano NN (2009b) Artificial neural networks in wood identification: the case of two Juniperus species from the Canary Islands. IAWA J 30:87–94CrossRefGoogle Scholar
  15. Esteban LG, de Palacios P, Fernández FG (2010) Use of artificial neural networks as a predictive method to determine moisture resistance of particle and fiber boards under cyclic testing conditions (UNE-EN 321). Wood Fib Sci 42:335–345Google Scholar
  16. García Fernández F, Esteban LG, de Palacios P, Guindeo A, Navarro N (2008) Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model. Inv Agrar-Sist Recur For 17:178–187CrossRefGoogle Scholar
  17. Gasson P (2011) How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially CITES. IAWA J 32:137–154CrossRefGoogle Scholar
  18. Gasson P, Miller R, Stekel DJ, Whinder F, Zieminska K (2010) Wood identification of Dalbergia nigra (CITES Appendix I) using quantitative wood anatomy, principal components analysis and naive Bayes classification. Ann Bot 105:45–56CrossRefPubMedGoogle Scholar
  19. Ghasembo N, Mobasheri MR, Reazey Y (2011) Vegetation species determination using spectral characteristics and artificial neural network (SCANN). J Agric Sci Technol 13:1223–1232Google Scholar
  20. Gong P, Pu RL, Yu B (1997) Conifer species recognition: an exploratory analysis of in situ hyperspectral data. Remote Sens Environ 62:189–200CrossRefGoogle Scholar
  21. Granitto PM, Navone HD, Verdes PF, Ceccatto HA (2002) Weed seeds identification by machine vision. Comput Electron Agric 33:91–103CrossRefGoogle Scholar
  22. Gu IYH, Andersson H, Vicen R (2009) Automatic classification of wood defects using support vector machines. In: Kulikowski JL, Wojciechowski K (eds) Computer vision and graphics. Proceedings of the international conference ICCVG 2008 (Lecture notes in computer science), vol 5337. Warsaw, pp 356–367Google Scholar
  23. Hagman POG, Grundberg SA (1995) Classification of scots pine (Pinus sylvestris) knots in density images from CT scaned logs. Holz Roh- Werkst 53:75–81CrossRefGoogle Scholar
  24. Hanssen F, Wischnewski N, Moreth U, Magel EA (2011) Molecular identification of Fitzroya cupressoides, Sequoia sempervirens, and Thuja plicata wood using taxon-specific RDNA-ITS primers. IAWA J 32:273–284CrossRefGoogle Scholar
  25. Hermanson JC, Wiedenhoeft AC (2011) A brief review of machine vision in the context of automated wood identification systems. IAWA J 32:233–250CrossRefGoogle Scholar
  26. Hernández-Pérez JA, García-Alvarado MA, Trystram G, Heyd B (2004) Neural networks for the heat and mass transfer prediction during drying of cassava and mango. Innov Food Sci Emerg Technol 5:57–64CrossRefGoogle Scholar
  27. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366CrossRefGoogle Scholar
  28. International Association of Wood Anatomists (IAWA) Committee (2004) IAWA List of microscopic features for softwood identification. IAWA J 25:1–70CrossRefGoogle Scholar
  29. Isasi P, Galván IM (2004) Redes neuronales artificiales: un enfoque práctico. [Artificial neural networks: a practical approach]. Pearson Educación, MadridGoogle Scholar
  30. Jane FW (1970) The structure of wood, 2nd edn. Adam and Charles Black, LondonGoogle Scholar
  31. Jiang W, Ozaktak BB, Mantri N, Tao Z, Lu H (2013) Classification of Camellia species from 3 sections using leaf anatomical data with back-propagation neural networks and support vector machines. Turk J Bot 37:1093–1103CrossRefGoogle Scholar
  32. Jordan R, Feeney F, Nesbitt N, Evertsen JA (1998) Classification of wood species by neural network analysis of ultrasonic signals. Ultrasonics 36:219–222CrossRefGoogle Scholar
  33. Kavdir I (2004) Discrimination of sunflower, weed and soil by artificial neural networks. Comput Electron Agric 44:153–160CrossRefGoogle Scholar
  34. Kiani S, Jafari A (2012) Crop detection and positioning in the field using discriminant analysis and neural networks based on shape features. J Agr Sci Tech 14(4):755–765Google Scholar
  35. Koch G, Richter HG, Schmitt U (2011) Design and application of CITESwoodID Computer-aided identification and description of CITES-protected timbers. IAWA J 32:213–220CrossRefGoogle Scholar
  36. Ladell JL (1959) A new method of measuring tracheid length. Forestry 32:124–125CrossRefGoogle Scholar
  37. Lycken A, Oja J (2006) A multivariate approach to automatic grading of Pinus sylvestris sawn timber. Scand J For Res 21:167–174CrossRefGoogle Scholar
  38. Moshou D, Vrindts E, De Ketelaere B, De Baerdemaeker J, Ramon H (2001) A neural network based plant classifier. Comput Electron Agric 31:5–16CrossRefGoogle Scholar
  39. Myhara RM, Sablani S (2001) Unification of fruit water sorption isotherms using artificial neural networks. Dry Technol 19:1543–1554CrossRefGoogle Scholar
  40. Nordmark U (2002) Knot identification from CT images of young Pinus sylvestris sawlogs using artificial neural networks. Scand J For Res 17:72–78CrossRefGoogle Scholar
  41. Nordmark U (2003) Models of knots and log geometry of young Pinus sylvestris sawlogs extracted from computed tomographic Iiages. Scand J For Res 18:168–175CrossRefGoogle Scholar
  42. Ozsahin S (2013) Optimization of process parameters in oriented strand board manufacturing with artificial neural network analysis. Eur J Wood Prod 71:769–777CrossRefGoogle Scholar
  43. Panchariya PC, Popovic D, Sharma AL (2002) Desorption isotherm modelling of black tea using artificial neural networks. Dry Technol 20:351–362CrossRefGoogle Scholar
  44. Peng G, Chen X, Wu W, Jiang X (2007) Modeling of water sorption isotherm for corn starch. J Food Eng 80:562–567CrossRefGoogle Scholar
  45. Pérez ML, Martín Q (2003) Aplicaciones de las redes neuronales a la estadística. Cuadernos de estadística. [Applications of neural networks to statistics. Statistics notebooks]. La Muralla S.A, MadridGoogle Scholar
  46. Ramírez GM, Chacón MI (2005) Clasificación de defectos en madera utilizando redes neuronales artificiales [Wood defects classification using artificial neural networks]. Comput y Sist 9:17–27Google Scholar
  47. Reby D, Lek S, Dimopoulos I, Joachim J, Lauga J, Aulagnier S (1997) Artificial neural networks as a classification method in the behavioural sciences. Behav Processes 40:35–43CrossRefPubMedGoogle Scholar
  48. Sarle WS (1997) Neural network FAQ. Part 1 of 7: Introduction. Periodic posting to the Usenet newsgroup comp.ai.neural-nets. ftp://ftp.sas.com/pub/neural/FAQ.html. Accessed 14 Jul 2014
  49. Sha W (2007) Comment on the issues of statistical modelling with particular reference to the use of artificial neural networks. Appl Catal A Gen 324:87–89CrossRefGoogle Scholar
  50. Turhan K, Serdar B (2013) Support vector machines in wood identification: the case of three Salix species from Turkey. Turk J Agric For 37:249–256Google Scholar
  51. Wheeler EA (2011) Inside wood: a web resource for hardwood anatomy. IAWA J 32:199–211CrossRefGoogle Scholar
  52. Wong WK, Yuen CWM, Fan DD, Chan LK, Fung EHK (2009) Stitching defect detection and classification using wavelet transform and BP neural network. Expert Syst Appl 36:3845–3856CrossRefGoogle Scholar
  53. Yuen CWM, Wong WK, Qian SQ, Chan LK, Fung EHK (2009) A hybrid model using genetic algorithm and neural network for classifying garment defects. Expert Syst Appl 36:2037–2047CrossRefGoogle Scholar
  54. Yusof R, Khalid M, Khairuddin ASM (2013) Fuzzy logic-based pre-classifier for tropical wood species recognition system. Mach Vis Appl 24:1589–1604CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Luis G. Esteban
    • 1
  • Paloma de Palacios
    • 1
  • María Conde
    • 1
    • 2
  • Francisco G. Fernández
    • 1
  • Alberto García-Iruela
    • 1
  • Marta González-Alonso
    • 1
  1. 1.Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingenieros de MontesUniversidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Productos ForestalesCIFOR-INIAMadridSpain

Personalised recommendations