Wood Science and Technology

, Volume 51, Issue 6, pp 1479–1534 | Cite as

State-of-the-art: intermediate and high strain rate testing of solid wood

  • Tiberiu Polocoșer
  • Bohumil Kasal
  • Frank Stöckel
Original
  • 214 Downloads

Abstract

The following state-of-the-art report summarizes important work done in wood science concerning intermediate and high strain rate testing. Intermediate testing may be done with hydraulic machines, which are generally classified as rapid loading. Intermediate testing may also be done using a transverse impact of a beam specimen with a pendulum, drop mass, or toughness tester, whereas high strain rate testing is generally done with the Kolsky bar. The article analyzes the different experimental testing apparatuses, the conclusions past researchers have made about them, and the toughness and strength measurements which were usually done. The transverse impact test is examined in detail because of its adjustability for specimen sizes. The value of this research is it delves into certain impact mechanics principles which are missing from the analysis of impact testing in wood science, which must be included to validate previously held assumptions. The physical response of wood to a dynamic load is not any different from other materials such as metals or rigid foams and is governed by the same principles. Nevertheless, over the years the application of impact mechanics principles to wood testing has been scarce and “black box” experimental, where empirical approaches such as the duration-of-load were often preferred. An example of these principles is the influence of higher modes of vibration plays a greater role on the stress state in testing than its influence on deflections. This principle has been thoroughly investigated for small strain rate vibrations, however, not applied to impact testing. Presently, there is no consensus on a constitutive strain rate model for wood under intermediate and high strain rates. This article provides direction for obtaining dynamic Young’s modulus and yield strength, which can be normally expected in the design of structures subjected to dynamical loadings, for the future creation of applicable constitutive strain rate models.

Supplementary material

226_2017_925_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1174 kb)

References

  1. Abrate S (2005) Impact on composite structures. Cambridge University Press, CambridgeGoogle Scholar
  2. Allazadeh MR, Wosu SN (2012) High strain rate compressive tests on wood. Strain 48(2):101–107CrossRefGoogle Scholar
  3. Al-Mousawi MM (1986) On experimental studies of longitudinal and flexural wave propagations: an annotated bibliography. Appl Mech Rev 39(6):853–865CrossRefGoogle Scholar
  4. ASTM (2009a) D143-09 Test methods for small clear specimens of timber. ASTM International, West ConshohockenGoogle Scholar
  5. ASTM (2009b) E1876-09 Test method for dynamic young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration. ASTM International, West ConshohockenGoogle Scholar
  6. ASTM (2010) D 6110-10 Test method for determining the Charpy impact resistance of notched specimens of plastics. ASTM International, West ConshohockenGoogle Scholar
  7. ASTM (2011) D3499-11 Test method for toughness of wood-based structural panels. ASTM International, West ConshohockenGoogle Scholar
  8. ASTM (2012a) **D6874-12. Test methods for nondestructive evaluation of wood-based flexural members using transverse vibration. ASTM International, West ConshohockenGoogle Scholar
  9. ASTM (2012b) E23-12c Test methods for notched bar impact testing of metallic materials. ASTM International, West ConshohockenGoogle Scholar
  10. ASTM (2013a) E2248-12 Test method for impact testing of miniaturized charpy v-notch specimens. ASTM International, West ConshohockenGoogle Scholar
  11. ASTM (2013b) D198-13 Test methods of static tests of lumber in structural sizes. ASTM International, West ConshohockenGoogle Scholar
  12. Bachmann H, Ammann W (1987) Vibrations in structures: induced by man and machines, vol 3. IABSE-AIPC-IVBH, ZürichGoogle Scholar
  13. Barnhart KE, Goldsmith W (1957) Stresses in beams during transverse impact. J Appl Mech 24:440–446Google Scholar
  14. Bell ER, Peck EC, Krueger NT (1954) Modulus of elasticity of wood determined by dynamic methods. USDA for serv report no. 1977, USDA For Serv Forest Products Laboratory, Madison, WI, United StatesGoogle Scholar
  15. Benthien JT, Georg H, Maikowski S, Ohlmeyer M (2012) Infill planks for horse stable constructions: Thoughts about kick resistance determination and alternative material development. Landbauforsch Appl Agric For Res 62(4):255Google Scholar
  16. Bocchio N, Paola R, van de Kuilen JWG (2001) Impact loading tests on timber beams. In: IABSE, vol 85, Lahti, Finland, pp 19–24Google Scholar
  17. Bodner SR, Symonds PS (1962) Experimental and theoretical investigation of the plastic deformation of cantilever beams subjected to impulsive loading. J Appl Mech 29(4):719–728CrossRefGoogle Scholar
  18. Botting JK (2003) Development of an FRP reinforced hardwood glulam guardrail. Master thesis, The University of Maine, Orono, ME, United StatesGoogle Scholar
  19. Boussinesq J (1885) Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse (Application of the study of potentials of balance and movement of elastic-solids: mainly the calculation of deformities and pressure that is produced, in these solids, any efforts exerted on a small part of their surface or their interior: thesis followed my extended notes on physics, mathematics and analysis), vol 4. Gauthier-VillarsGoogle Scholar
  20. Bragov A, Lomunov A (1997) Dynamic properties of some wood species. J Phys IV 7(C3):487–492Google Scholar
  21. Brancheriau L (2006) Influence of cross section dimensions on Timoshenko’s shear factor—application to wooden beams in free-free flexural vibration. Ann For Sci 63(3):319–321CrossRefGoogle Scholar
  22. Brancheriau L, Kouchade C, Brémaud I (2010) Internal friction measurement of tropical species by various acoustic methods. J Wood Sci 56(5):371–379CrossRefGoogle Scholar
  23. Bresse JAC (1859) Cours de Mécanique Appliquée [Course in applied mechanics]. Mallet-Bachalier, Paris, p 126Google Scholar
  24. Brokaw MP, Foster GW (1958) Effect of rapid loading and duration of stress on the strength properties of wood tested in compression and flexure. USDA, for prod lab report no. 1518, Madison, WI, United StatesGoogle Scholar
  25. Buchar J, Adamík V (2001) Wood strength evaluation under impact loading. In: 39th international conference on experimental stress analysis, Praha, Czech Republic, volume 3, issue 6Google Scholar
  26. Bucur V (2006) Acoustics of wood, 2nd edn. Springer, BerlinGoogle Scholar
  27. Burmester A (1965) Zusammenhang zwischen Schallgeschwindigkeit und morphologischen, physikalischen und mechanischen Eigenschaften von Holz (Relationship between sound velocity and the morphological, physical and mechanical properties of wood) (In German). Holz Roh Werkst 23(6):227-236CrossRefGoogle Scholar
  28. Chen W, Lu F, Frew DJ, Forrestal MJ (2002) Dynamic compression testing of soft materials. Trans ASME 69(3):214–223CrossRefGoogle Scholar
  29. Chou PC, Flis WJ (1977) Design curve for beams under impact loading. AIAA J 15(4):455–456CrossRefGoogle Scholar
  30. Chree C (1892a) On thin rotating isotropic disks. Proc Camb Philos Soc 7:201–215Google Scholar
  31. Chree C (1892b) On long rotating circular cylinders. Proc Camb Philos Soc 7:283–305Google Scholar
  32. Christoforou AP, Yigit AS (1998) Effect of flexibility on low velocity impact response. J Sound Vib 217(3):563–578CrossRefGoogle Scholar
  33. Colton JD (1977) Multiple fracture of beams under localized impulsive loading. J Appl Mech 44(2):259–263CrossRefGoogle Scholar
  34. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19(90):297–301CrossRefGoogle Scholar
  35. Coon B, Reid J, Rohde J (1999) Dynamic impact testing of guardrail posts embedded in soil. Report no. TRP-03-77-98, FHWA, McLean, VA, United StatesGoogle Scholar
  36. Cox H (1849) On impact of elastic beams. Trans Camb Philos Soc 9:73–78Google Scholar
  37. Crafton PA (1961) Shock and vibration in linear systems. Harper and Brothers, New YorkGoogle Scholar
  38. Davies RM (1949) The determination of static and dynamic yield stresses using a steel ball. Proc R Soc Lond A Math Phys Eng Sci 197(1050):416–432CrossRefGoogle Scholar
  39. Descartes R (1644) Principlia philosophiae [Principles of Philosophy]Google Scholar
  40. DIN 52–189 (1981) Prüfung von Holz: Schlagbiegeversuch, Bestimmung der Bruchschlagarbeit. DIN Deutsches Institut für Normungen, Beuth, BerlinGoogle Scholar
  41. DIN EN 1317-2 (2011) Rückhaltesysteme an Straßen – Teil 2: Leistungsklassen, Abnahmekriterien für Anprallprüfungen und Prüfverfahren für Schutzeinrichtungen und Fahrzeugbrüstungen; Deutsche Fassung EN 1317-2:2010. DIN Deutsches Institut für Normungen, Beuth, BerlinGoogle Scholar
  42. DIN EN 336 (2013) Bauholz für tragende Zwecke—Maße, zulässige Abweichungen; Deutsche Fassung EN 336:2013. DIN Deutsches Institut für Normungen, Beuth, BerlinGoogle Scholar
  43. Drow JT, Markwardt LJ, Youngquist WG (1958) Results of impact tests to compare the pendulum impact and toughness test methods. USDA for serv report no. 2109. USDA for Serv Forest Products Laboratory. Madison, WI, United StatesGoogle Scholar
  44. Dugas R (2012) A history of mechanics. Courier Corporation, New YorkGoogle Scholar
  45. Elmendorf A (1916) Stresses in impact. J Franklin Inst 182(6):771–790CrossRefGoogle Scholar
  46. Evans GR, Jones BC, McMillan AJ, Darby MI (1991) A new numerical method for the calculation of impact forces. J Phys D Appl Phys 24(6):854–858CrossRefGoogle Scholar
  47. Flügge W, Zajac EE (1959) Bending impact waves in beams. Arch Appl Mech 28(1):59–70Google Scholar
  48. FPL (2010) Wood handbook: wood as an engineering material—Centennial ed. General technical report FPL. USDA For Serv Forest Products Laboratory, Madison, WI, United StatesGoogle Scholar
  49. Fried I (1979) Numerical solution of differential equations. Academic Press, New YorkGoogle Scholar
  50. Galilei G (1638) Dialogues concerning two new sciences (trans: Crew H, de Salvio A, 1914). Macmillan, New YorkGoogle Scholar
  51. Gatchell C, Michie J (1974) Pendulum impact tests of wooden and steel highway guardrail posts. USDA for serv research paper NE-311, Upper Darby, PA, United StatesGoogle Scholar
  52. Gerhards CC (1968) Effects of type of testing equipment and specimen size on toughness of wood. USDA For Serv Forest Products Laboratory, Madison, WI, United StatesGoogle Scholar
  53. Gerhards CC (1977) Effect of duration and rate of loading on strength of wood and wood-based materials. USDA for serv research paper FPL 283, USDA For Serv Forest Products Laboratory, Madison, WI, United StatesGoogle Scholar
  54. Gilbertson CG, Bulleit WM (2013) Load duration effects in wood at high strain rates. J Mater Civ Eng 25(11):1647–1654CrossRefGoogle Scholar
  55. Goens E (1931) Über die Bestimmung des Elastizitätsmoduls von Stäben mit Hilfe von Biegungsschwingungen [On the determination oft he modulus of elasticity of rods by means of flexural vibrations]. Ann Phys 403(6):649–678CrossRefGoogle Scholar
  56. Goldsmith W (1960) Impact: the theory and physical behaviour of colliding solids. Edward Arnold Ltd., LondonGoogle Scholar
  57. Graff KF (1975) Wave motion in elastic solids. Courier Corporation, New YorkGoogle Scholar
  58. Gutkowski RM, Shigidi A, Abdallah MT, Peterson ML (2007) Dynamic impact load tests of a bridge guardrail system. MPC report no. 07-188, Mountain-Plains Consortium, Fargo, ND, 37 ppGoogle Scholar
  59. Han SM, Benaroya H, Wei T (1999) Dynamics of transversely vibrating beams using four engineering theories. J Sound Vib 225(5):935–988CrossRefGoogle Scholar
  60. Hardie D, Parkins RN (1968) A study of the errors due to shear and rotatory inertia in the determination of Young’s modulus by flexural vibrations. J Phys D Appl Phys 1(1):77CrossRefGoogle Scholar
  61. Harrigan JJ, Reid SR, Tan PJ, Reddy TY (2005) High rate crushing of wood along the grain. Int J Mech Sci 47(4–5):521–544CrossRefGoogle Scholar
  62. Harris CM, Piersol AG (2002) Harris’ shock and vibration handbook, vol 5. McGraw-Hill, New YorkGoogle Scholar
  63. Hartmann WM (1997) Signals, sound, and sensation. American Institute of Physics, WoodburyGoogle Scholar
  64. Hatt WK, Turner WP (1906) The Purdue University impact machine. Proc Am Soc Test Mater 6:462Google Scholar
  65. Hearmon RFS (1946a) The elastic constants of anisotropic materials. Rev Mod Phys 18(3):409CrossRefGoogle Scholar
  66. Hearmon RFS (1946b) The fundamental frequency of vibration of rectangular wood and plywood plates. Proc Phys Soc 58(1):78CrossRefGoogle Scholar
  67. Hearmon RFS (1956) The elastic constants of anisotropic materials—II. Adv Phys 5(19):323–382CrossRefGoogle Scholar
  68. Hearmon RFS (1957) Some applications of physics to wood. Br J Appl Phys 8(2):49CrossRefGoogle Scholar
  69. Hearmon RFS (1958) The influence of shear and rotatory inertia on the free flexural vibration of wooden beams. Br J Appl Phys 9(10):381CrossRefGoogle Scholar
  70. Hearmon RFS, Adams E (1952) The bending and twisting of anisotropic plates. Br J Appl Phys 3(5):150CrossRefGoogle Scholar
  71. Hearmon RFS, Barkas W (1941) The effect of grain direction on the Young’s moduli and rigidity moduli of beech and sitka spruce. Proc Phys Soc 53(6):674CrossRefGoogle Scholar
  72. Hepworth DG, Vincent JFV, Stringer G, Jeronimidis G (2002) Variations in the morphology of wood structure can explain why hardwood species of similar density have very different resistances to impact and compressive loading. Philo Trans R Soc Lond A Math Phys Eng Sci 360(1791):255–272CrossRefGoogle Scholar
  73. Hertz H (1881) On the contact of elastic solids. J Reine Angew Math 92(156–171):110Google Scholar
  74. Hetényi M (1950) Handbook of experimental stress analysis. Wiley, New YorkGoogle Scholar
  75. Hodgkinson E (1833) On the effect of impact on beams. Report of the third meeting of the British Association for the Advancement of Science, Cambridge, UK, pp 421–422Google Scholar
  76. Hoppmann WH Jr (1948) Impact of a mass on a damped elastically supported beam. J Appl Mech 15(1):125–136Google Scholar
  77. Huyghens C (1703) De Moto Corporum ex Corporum ex Percussione in Ovevres Completes, vol 16(1929) (English trans by Blackwell, RJ, Isis 68, 574–597, 1977)Google Scholar
  78. ISO 12680–1 (2005) Methods of test for refractory products—part 1: determination of dynamic Young’s modulus (MOE) by impulse excitation of vibration. International Organization for Standardization, GenevaGoogle Scholar
  79. ISO 3348 (1975) Wood—determination of impact bending strength. International Organization for Standardization, GenevaGoogle Scholar
  80. ISO 3349 (1975) Wood—determination of modulus of elasticity in static bending. International Organization for Standardization, GenevaGoogle Scholar
  81. Jacques E, Lloyd A, Braimah A, Saatcioglu M, Doudak G, Abdelalim O (2014) Influence of high strain-rates on the dynamic flexural material properties of spruce–pine–fir wood studs. Can J Civ Eng 41(1):56–64CrossRefGoogle Scholar
  82. James WL (1962) Dynamic strength and elastic properties of wood. For Prod J 12(6):253–260Google Scholar
  83. James WL (1968) Static and dynamic strength and elastic properties of ponderosa and Loblolly pine. Wood Sci 1(1):15–22Google Scholar
  84. Jansson B (1992) Impact loading of timber beams. Masters thesis, The University of British Columbia, Vancouver, British Columbia, CanadaGoogle Scholar
  85. Jansson B (1999) Impact loading of timber beams. RILEM symposium on timber engineering, Stockholm, SwedenGoogle Scholar
  86. JIS Standard (2009) Z2101-2009. Methods of test for woods. Japanese Industrial Standards Committee, TokyoGoogle Scholar
  87. Johnson W (1972) Impact strength of materials. Arnold, LondonGoogle Scholar
  88. Johnson W (1986) Historical and present-day references concerning impact on wood. Int J Impact Eng 4(3):161–174CrossRefGoogle Scholar
  89. Jones N (1997) Structural impact. Cambridge University Press, CambridgeGoogle Scholar
  90. Kaiserlik JH (1978) Nondestructive testing methods to predict effect on degradation of wood: a critical assessment. USDA for serv report no. FSGTR-FPL-19, USDA For Serv Forest Products Laboratory, Madison, WI, United StatesGoogle Scholar
  91. Karacabeyli E, Soltis LA (eds) (1991) State of the art report on duration of load research for lumber in North America. In: Proceedings of the 1991 international timber engineering conference, 2–5 September, London, vol 4Google Scholar
  92. Kasal B, Guindos P, Polocoșer T, Heiduschke A, Urushadze S, Pospisil S (2014) Heavy laminated timber frames with rigid three-dimensional beam-to-column connections. J Perform Constr Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000594 Google Scholar
  93. Keeton JR (1968) Dynamic properties of small, clear specimens of structural-grade timber. Technical report R-573, Y-F011-05-04-003, U.S. Navy Civ Eng Lab, Port Hueneme, CA, United States, 50 ppGoogle Scholar
  94. Keith CT (1964) Annual layers affect resistance of wood to impact. For Prod J 14(7):285–289Google Scholar
  95. Keith CT (1966) Effect of orientation of annual layers on the resistance of wood to impact loading. J Mater 1(4):759–769Google Scholar
  96. Kida S, Oda J (1982) On fracture behavior of brittle cantilever beam subjected to lateral impact load. Exp Mech 22(2):69–74CrossRefGoogle Scholar
  97. Kloot NH (1954) The effect of moisture content on the impact strength of wood. Aust J Appl Sci 5(2):183–186Google Scholar
  98. Koehler A (1933) Causes of brashness in wood. USDA for serv technical bulletin no 342, USDA For Serv Forest Products Laboratory, Washington, DC, United States, 40 ppGoogle Scholar
  99. Kollmann FFP (1937) Über die Schlag-und Dauerfestigkeit der Hölzer (On the impact and fatigue strength of wood) (In German). Preuss HolzforschungsinstGoogle Scholar
  100. Kollmann FFP, Côte WA (1968) Principles of wood science and technology, vol 1: solid wood. Springer, BerlinCrossRefGoogle Scholar
  101. Kollmann FFP, Krech H (1960) Dynamische Messung der elastischen Holzeigenschaften und der Dämpfung—ein Beitrag zur zerstörungsfreien Werkstoffprüfung (Dynamic measurement of damping capacity and elastic properties of wood) (In German). Holz Roh Werkst 18(2):41–54CrossRefGoogle Scholar
  102. Kollmann FFP, Kuenzi E, Stamm A (1975) Principles of wood science and technology, vol 2: wood based materials. Springer, BerlinCrossRefGoogle Scholar
  103. Kolsky H (1963) Stress waves in solids. Dover Publications, New YorkGoogle Scholar
  104. Kubojima Y, Ohsaki H, Kato H, Tonosaki M (2006) Fixed-fixed flexural vibration testing method of beams for timber guardrails. J Wood Sci 52(3):202–207CrossRefGoogle Scholar
  105. Lagerhjelm P (1828) Versuche zur Bestimmung der Dichtheit, Gleichartigkeit, Elasticität, Schmiedbarkeit und Stärke des gewalzten und geschmiedeten Stabeisens. Aus dem Schwedischen übersetzt von Dr. I. W. Pfaff [Experimental determination of the density, homogeneity, elasticity, forgeability and ultimate strength of rolled and forged rods. Translated from Swedish by Dr. I.W. Pfaff]. Nürnberg, Schräg. 1889 4(1)Google Scholar
  106. Lee EH (1940) The impact of a mass striking a beam. J Appl Mech 7:A-129–A-138Google Scholar
  107. Leijten AJM (2000) Literature review of impact strength of timber and joints. World conference on timber engineering, Whistler, CanadaGoogle Scholar
  108. Leijten AJM (2004) Heat treated wood and the influence on the impact bending strength. Heron 49(4):349–359Google Scholar
  109. Lindholm U (1971) High strain rate testing. In: Bunshah RF (ed) Techniques of metals research: measurement of mechanical properties. Part 1, vol 7, issue 5. Wiley, London, pp 199–271Google Scholar
  110. Liska JA (1950) Effect of rapid loading on the compressive and flexural strength of wood. USDA for serv report no. 1767, USDA For Serv Forest Products Laboratory, Madison, WI, United StatesGoogle Scholar
  111. Lo CC (1980) A cantilever beam chattering against a stop. J Sound Vib 69(2):245–255CrossRefGoogle Scholar
  112. Madsen B (1971) Duration of load tests for dry lumber in bending. Structural research series report no. 3, Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada, 41 ppGoogle Scholar
  113. Madsen B(1972a) Duration of load tests for dry lumber subjected to shear. Structural research series report no. 6, Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada, 24 ppGoogle Scholar
  114. Madsen B (1972b) Duration of load tests for wet lumber in bending. Structural research series report no. 4, Department of Civil Engineering, University of British Columbia, Vancouver, Canada, 23 ppGoogle Scholar
  115. Madsen B (1972c) Duration of load tests for wood in tension perpendicular to grain. Structural research series report no. 7, Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada, 21 ppGoogle Scholar
  116. Madsen B (1975) Strength values for wood and limit states design. Can J Civ Eng 2(3):270–279CrossRefGoogle Scholar
  117. Meyers MA (1994) Dynamic behavior of materials. Wiley, New YorkCrossRefGoogle Scholar
  118. Murata K, Kanazawa T (2007) Determination of Young’s modulus and shear modulus by means of deflection curves for wood beams obtained in static bending tests. Holzforschung 61(5):589–594CrossRefGoogle Scholar
  119. Murphey WK (1963) Cell-wall crystallinity as a function of tensile strain. For Prod J 13(4):151–155Google Scholar
  120. Murray YD (2007) Manual for LS-DYNA wood material model 143. Publication no. FHWA-HRT-04-097, FHWA. McLean, VA, United StatesGoogle Scholar
  121. Newton I (1687) Mathematical principles of natural philosophy and his system of the world (trans: Motte A; revised and annotated by Cajori F 1934)Google Scholar
  122. Obataya E, Norimoto M, Gril J (1998) The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39(14):3059–3064CrossRefGoogle Scholar
  123. Obataya E, Ono T, Norimoto M (2000) Vibrational properties of wood along the grain. J Mater Sci 35(12):2993–3001CrossRefGoogle Scholar
  124. Parkes EW (1958) The permanent deformation of an encastré beam struck transversely at any point in its span. In: ICE proceedings, vol 10, issue 3. Thomas Telford, pp 277–304Google Scholar
  125. Pearson RG (1972) The effect of duration of load on the bending strength of wood. Holzforsch Int J Biol Chem Phys Technol Wood 26(4):153–158Google Scholar
  126. Peng C (1991) Crushing and indentation of wood under static and dynamic loading conditions. Doctoral dissertation, The University of Manchester Institute of Science and Technology, Manchester, UKGoogle Scholar
  127. Pettifor C (1942) Resistance of wood to impact loads: correlation of results from different types of test. Aircr Eng Aerosp Technol 14(9):248–250CrossRefGoogle Scholar
  128. Pochhammer L (1879) Untersuchungen über das Gleichgewicht des elastischen Stabes [Studies regarding the equilibrium of the elastic rod]. Universitäts-buchhandlung (P. Toeche)Google Scholar
  129. Polocoşer T, Stöckel F, Kasal B (2016) Low-velocity transverse impact of small, clear spruce and pine specimens with additional energy absorbing treatments. J Mater Civ Eng. doi: 10.1061/(ASCE)MT.1943-5533.0001545 Google Scholar
  130. Poncelet JV (1839) Introduction à la mécanique industrielle, physique ou expérimentale [Introduction to the industrial, physical or experimental mechanics]. ThielGoogle Scholar
  131. Rayleigh JWSB (1896) The theory of sound, vol 2. Macmillan, LondonGoogle Scholar
  132. Rayleigh JWSB (1906) XXII. On the production of vibrations by forces of relatively long duration, with application to the theory of collisions. Lond Edinb Dublin Philos Mag J Sci 11(62):283–291CrossRefGoogle Scholar
  133. Reid SR, Peng C (1997) Dynamic uniaxial crushing of wood. Int J Impact Eng 19(5):531–570CrossRefGoogle Scholar
  134. Riley WF, Durelli AJ (1962) Application of Moiré methods to the determination of transient stress and strain distributions. J Appl Mech 29(1):23–29CrossRefGoogle Scholar
  135. Robinson WH (1982) Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthq Eng Struct D 10(4):593–604CrossRefGoogle Scholar
  136. Saint-Venant B (1854) Choc transversal et de la résistance vive des barres élastiques appuyées aux extrémités [Traversal shock and the dynamic resistance of elastic bars pressed at the extremities]. Bull Soc Philomath Paris 1(5):1–11Google Scholar
  137. Saito H, Sato K (1962) Flexural wave propagation and vibration of laminated rods and beams. J Appl Mech 29(2):287–292CrossRefGoogle Scholar
  138. Sasaki H, Maku T (1963) Creep of glued laminated wood beams. Wood Res Bull, Wood Res Inst KyotoGoogle Scholar
  139. Scharton TD (2012) NASA handbook, force limited vibration testing no. HDBK-7004C, NASA Handbooks, Washington, DC, United StatesGoogle Scholar
  140. Schonberg W, Keer L, Woo T (1987) Low velocity impact of transversely isotropic beams and plates. Int J Solids Struct 23(7):871–896CrossRefGoogle Scholar
  141. Kollmann FFP, Sekhar, AC (1954) On measurement of toughness in timber. Indian forest bulletin no. 167Google Scholar
  142. Sekhar AC (1966) Dynamic stresses in timber. Holz Roh Werkst 24(11):559–563CrossRefGoogle Scholar
  143. Sekhar AC, Nagar BN (1965) Effect of stress, time and grain angle on damping properties of wood. Eur J Wood Wood Prod 23(1):3–6CrossRefGoogle Scholar
  144. Sezawa K (1927) On the decay of waves in visco-elastic solid bodies. 東京帝国大学地震研究所彙報 (Tokyo Imperial University, Earthquake Research Institute) 3:43–53Google Scholar
  145. Siewert TA, Manahan MP (2000) Pendulum impact testing: a century of progress. STP 1380, ASTM International, West Conshohocken, PA, United StatesGoogle Scholar
  146. Sobue N (1986) Instantaneous measurement of elastic constants by analysis of the tap tone of wood: application to flexural vibration of beams. 木材学会誌 32(4):274–279Google Scholar
  147. Stephenson JG, Wilhoit JC Jr (1965) An experimental study of bending impact waves in beams. Exp Mech 5(1):16–21CrossRefGoogle Scholar
  148. Stewart DE (2000) Rigid-body dynamics with friction and impact. SIAM Rev 42(1):3–39CrossRefGoogle Scholar
  149. Stronge WJ (2000) Impact mechanics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  150. Sugiyama H (1967) On the effect of the loading time on the strength properties of wood. Wood Sci Technol 1(4):289–303CrossRefGoogle Scholar
  151. Sukontasukkul P, Lam F, Mindess S (2000) Fracture of parallel strand lumber (PSL) under impact loading. Mater Struct 33(7):445–449. doi: 10.1007/BF02480664 CrossRefGoogle Scholar
  152. Symonds PS, Mentel TJ (1958) Impulsive loading of plastic beams with axial constraints. J Mech Phys Solids 6(3):186–202CrossRefGoogle Scholar
  153. Nakamura T, Yoshida N, Iwai S, Takai H (1980) Shaking table tests of steel frames. In: Proceedings of the world conference on earthquake engineering, vol 7, p 165Google Scholar
  154. Timoshenko SP (1913) Zur Frage nach der Wirkung eines Stosses auf einen Balken [About the inquiry into the effect of an impact on a beam]. Z Angew Math Phys 62(1–4):198–209Google Scholar
  155. Timoshenko SP (1921) LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil Mag 6(41–245):744–746CrossRefGoogle Scholar
  156. Timoshenko SP (1937) Vibration problems in engineering, 2nd edn. D. van Nostrand Company Inc., New YorkGoogle Scholar
  157. Timoshenko SP (1983) History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Dover Publications, New YorkGoogle Scholar
  158. Turnbull-Grimes C, Charlie WA, Gutkowski RM, Balogh J (2010) Bus-Stop shelters–Improved Safety. Report for North Dakota State University. Fargo, ND, United StatesGoogle Scholar
  159. Vary A (1987) The acousto-ultrasonic approach. NASA technical memorandum 89843, Blacksburg, VA, United StatesGoogle Scholar
  160. Wakabayashi M, Nakamura T, Iwai S, Hayashi Y (1994) Effects of strain rate on the behavior of structural members. In: Proceedings of the 8th world conference on earthquake engineering, vol 4, pp 491–498Google Scholar
  161. Wallis J (1670) Mechanica: Sive, De Motu, Tractatus GeometricusGoogle Scholar
  162. Widehammar S (2004) Stress–strain relationships for spruce wood: influence of strain rate, moisture content and loading direction. Exp Mech 44(1):44–48CrossRefGoogle Scholar
  163. Widmann R, Steiger R (2009) Impact loaded structural timber elements made from Swiss grown Norway spruce. In: Proceedings of CIB-W18 meeting 42, Dübendorf, Switzerland, 24–27 August 2009, paper 42-6-2Google Scholar
  164. Wilson TRC (1922) Impact tests of wood. Proc Am Soc Test Mat Bd 22(2):55–73Google Scholar
  165. Wilson TRC (1932) Strength-moisture relations for wood. USDA tech bull no. 282Google Scholar
  166. Wood LW (1951) Relation of strength of wood to duration of load. USDA for serv report no. 1916. USDA For Serv Forest Products Laboratory, Madison, WI, United StatesGoogle Scholar
  167. Wood LW (1960) Relation of strength of wood to duration of load, information reviewed and reaffirmed from original 1951 report. USDA for serv report no. 1916, USDA For Serv Forest Products Laboratory, Madison, WI, United StatesGoogle Scholar
  168. Wren C (1668) Lex Nature de Collisione Corporum. Philos Trans R Soc 3(33–44):864–868Google Scholar
  169. Ylinen A (1963) Comparative investigation on the influence of rate of loading and deformation on the ultimate wood strength. Holz Roh Werkst 21(5):173–176CrossRefGoogle Scholar
  170. Ylinen A (1965) Prediction of the time-dependent elastic and strength properties of wood by the aid of a general nonlinear visco-elastic rheological model. Holz Roh Werkst 23(5):193–196CrossRefGoogle Scholar
  171. Yoshihara H (2012) Examination of the specimen configuration and analysis method in the flexural and longitudinal vibration tests of solid wood and wood-based materials. For Prod J 62(3):191Google Scholar
  172. Yoshihara H (2013a) Flatwise Young’s modulus and flatwise shear modulus of plywood measured by flexural vibration test. Holzforschung 67(6):683–690CrossRefGoogle Scholar
  173. Yoshihara H (2013b) Comparison of results obtained by static 3-and 4-point bending and flexural vibration tests on solid wood, MDF, and 5-plywood. Holzforschung 67(8):941–948CrossRefGoogle Scholar
  174. Yoshihara H, Yoshinobu M (2015) Young’s modulus and shear modulus of solid wood measured by the flexural vibration test of specimens with large height/length ratios. Holzforschung 69(4):493–499CrossRefGoogle Scholar
  175. Young T (1807) A course of lectures on natural philosophy and the mechanical arts, vol 2. Printed for J. Johnson, LondonGoogle Scholar
  176. Zener C, Feshbach H (1939) A method of calculating energy losses during impact. J Appl Mech 6(2):A-67–A-70Google Scholar
  177. Zukas JA (ed) (2004) Introduction to hydrocodes. In: Studies in applied mechanics, vol 49. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringTechnische Universität BraunschweigBrunswickGermany
  2. 2.Chair of Organic and Wood-Based Materials, Department of Civil and Environmental Engineering and Fraunhofer Wilhelm Klauditz InstituteTechnische Universität BraunschweigBrunswickGermany

Personalised recommendations