Skip to main content

Advertisement

Log in

Review: Comparative analysis of CO2 laser and conventional sawing for cutting of lumber and wood-based materials

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Since its initial development over 50 years ago, laser cutting has become one of the most widely used techniques to cut wood-based materials. This technology is applied to commercial settings to process a range of metallic and non-metallic materials. Here, some of the pros and cons of these applications are analysed, as well as the limitations of laser cutting technology for wood and wood-based materials. Thus, a technical overview of the potential and range of parameters required for successful application to these materials is provided. For comparative purposes, the applicability of conventional circular sawing is analysed. Limitations and requirements vary considerably among technologies. In contrast to conventional sawing, contact-free laser cutting is not limited by kerf width (width of material removed by the laser beam) or tool wear. Increasing thickness of the workpiece, on the other hand, represents a major limiting factor for laser cutting. By increasing the laser power output, feed speed increases; however, high output power also requires high energy input due to the low energy conversion efficiency associated with this technology. Instantaneous vaporization is the preferred laser cutting method for cellulosic materials, and it depends on the depth of focus produced by the converging lens. In sum, laser cutting represents a step forward in wood-based material cutting for its enhanced performance, although this is to be balanced by an increase in energy consumption and a potentially higher economic cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anon (2011) Cellulose, food and agriculture organization of the United Nations, referred 3.12.2011. available: http://www.fao.org/docrep/W6355E/w6355e0l.htm

  • Barcikowski S, Koch G, Odermatt J (2006) Characterisation and modification of the heat affected zone during laser material processing of wood and wood composites. Holz Roh - Werkst 64(2):94–103

    Article  CAS  Google Scholar 

  • Barnekov VG, McMillin CW, Huber HA (1986) Factors influencing laser cutting of wood. For Prod J 36(1):55–58

    Google Scholar 

  • Barnekov V, Huber HA, McMillin CW (1989) Laser machining wood composites. For Prod J 39(10):76–78

    Google Scholar 

  • Bryan EL (1963) Machining wood with light. For Prod J 13(1):14

    Google Scholar 

  • Csanády E, Magoss E (2013) Mechanics of wood machining, 2nd edn. Springer, Berlin-Heidelberg

    Book  Google Scholar 

  • DIN 8589–6 (2003) Fertigungsverfahren Spanen- Teil 6: Sägen- Einordnung, Unterteilung, Begriffe (Manufacturing processes chip removal—Part 6: Sawing; Classification, subdivision, terms and definitions). Deutsches Institut für Normung e.V., Berlin

    Google Scholar 

  • Eltawahni HA, Olabi AG, Benyounis KY (2011) Investigating the CO2 laser cutting parameters of MDF wood composite material. Opt Laser Technol 43(3):648–659

    Article  CAS  Google Scholar 

  • Eltawahni HA, Rossini NS, Dassisti M, Alrashed K, Aldaham TA, Benyounis KY, Olabi AG (2013) Evalaution and optimization of laser cutting parameters for plywood materials. Opt Lasers Eng 51(9):1029–1043

    Article  Google Scholar 

  • Fischer R (1978) Ein Beitrag zur Mechanik des Spanungsvorganges nicht fließfähiger Werkstoffe am Beispiel von Holz. (Contributions to the mechanics of cutting processes of non-flowable materials like wood). Holztechnologie 19:75–80

    Google Scholar 

  • Fischer R (1979) Orientierende Versuche zur Reibung beim Schneiden von Holz. (Indicative examinations of friction by wood cutting). Holztechnologie 20:111–115

    Google Scholar 

  • Fischer R (1983) Fortschritte in der Theorie des Spanens von Holz und ein Beitrag zur Modellierung der Abstumpfung von Holzbearbeitungswerkzeugen. (Advances within the theory of wood cutting processes and contributions to modelling tool wear). Holztechnologie 24(2):67–72

    Google Scholar 

  • Gottlöber C (2014) Zerspanen von Holz und Holzwerkstoffen (Machining of wood and wood products). Carl Hanser Verlag, Munich

    Google Scholar 

  • Hernandez-Castaneda JC, Kursad Sezer H, Li L (2011) The effect of moisture content in fibre laser cutting of pine wood. Opt Lasers Eng 49(9–10):1139–1152

    Article  Google Scholar 

  • Hoffmeister H-W, Lemke B (1999) Oberflächenqualität in der Massivholzbearbeitung. (Surface quality in wood processing). HOB Die Holzbearbeitung 9:85–90

    Google Scholar 

  • Hovikorpi J, Laakso P, Malmberg H, Kujanpää V, Miikki N (2004) Laser cutting of paper. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics 2004

  • Huber HA, McMillin CW, Rasher A (1982) Economics of cutting wood parts with a laser under optical image analyzer control. For Prod J 32(3):16–21

    Google Scholar 

  • Ion J (2005) Laser processing of engineering materials: principles, procedure and applications, 1st edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  • Laakso P, Hovikorpi J, Malmberg H, Kujanpää V, Miikki N (2004) Laser cutting of solid boards. In: Proceedings of the 4th LANE 2004, August 2004, Erlangen, Germany

  • Li L, Mazumder J (1991) A study of the mechanism of laser cutting of wood. For Prod J 41(10):53–59

    Google Scholar 

  • Lum KCP, Ng SL, Black I (2000) CO2 laser cutting of MDF 1. Determination of process parameter settings. Opt Laser Technol 32(1):67–76

    Article  Google Scholar 

  • Malmberg H, Leino K, Kujanpää V (2006) Laser cutting of paper and board (ILACPaper). Department of Mechanical Engineering, Lappeenranta University of Technology, Finland, p 344

    Google Scholar 

  • Malmberg H, Laakso P, Miikki N, Kujanpää V (2007) Laser cutting of corrugated boards. In: 11th Nordic Conference in Laser Processing of Materials (NOLAMP 11), 20–22 Aug 2007, Acta Universitatis Lappeenrantaensis 273V. Kujanpää and A. Salminen

  • McMillin CW, Harry JE (1971) Laser machining of southern pine. For Prod J 21(10):34–37

    Google Scholar 

  • McMillin CW, Huber HA (1985) Gluebond strength of laser cut wood. For Prod J 35(1):23–25

    Google Scholar 

  • Mukherjee K, Grendzwell T, Khan PAA, McMillin CW (1990) Gas flow parameters in laser cutting of wood—nozzle design. For Prod J 40(10):39–42

    Google Scholar 

  • Ng SL, Lum KCP, Black I (2000) CO2 laser cutting of MDF 2. Estimation of power distribution. Opt Laser Technol 32(1):77–87

    Article  Google Scholar 

  • Pagès H, Piombini H, Enguehard F, Acher O (2005) Demonstration of paper cutting using single emitter laser diode and infrared-absorbing ink. Opt Express 13(7):2351–2357

    Article  PubMed  Google Scholar 

  • Peters CC, Banas CM (1977) Cutting wood and wood-base products with a multikilowatt CO2 laser. For Prod J 27(11):41–45

    Google Scholar 

  • Peters CC, Marshall HL (1975) Cutting wood materials by laser. US For Prod Lab Res Pap

  • Piili H (2013) Characterisation of laser beam and paper material interaction. Lappeenranta University of Technology, Lappeenranta, p 474

    Google Scholar 

  • Piili H, Hirvimäki M, Salminen A, Lindell H (2009a). Repeatability of laser cutting of uncoated and coated boards. In: Nolamp 2009, 24–26.8.2009, Copenhagen Denmark

  • Piili H, Salminen A, Kujanpää V (2009b) Interaction between laser beam and paper materials. In: 28th International Congress on Applications of Lasers & Electro-Optics (ICALEO 2009)

  • Powell J (1998) CO2 Laser cutting, 2nd edn. Springer, London

    Book  Google Scholar 

  • Powell J, Kaplan A (2004) Laser cutting: from first principles to the state of the art. In: PICALO 2004—1st Pacific International Conference on Applications of Laser and Optics, Conference Proceedings

  • Quintero F, Riveiro A, Lusquiños F, Comesaña R, Pou J (2011a) Feasibility study on laser cutting of phenolic resin boards. Phys Procedia 12(2011):578–583

    Article  CAS  Google Scholar 

  • Quintero F, Riveiro A, Lusquiños F, Comesaña R, Pou J (2011b) CO2 laser cutting of phenolic resin boards. J Mater Process Technol 211(11):1710–1718

    Article  CAS  Google Scholar 

  • Radovanovic M, Madic M (2011) Experimental investigations of CO2 laser cut quality: a review. Nanoconv Technol Rev 4:35–42

    Google Scholar 

  • Seeger K, Tönsing E (1999) Stromeinsparpotentiale in der holzverarbeitenden Industrie. Energie effizient nutzen—Schwerpunkt Strom (Electricity saving potential within the wood processing industry. Efficient Energy usage—Main focus electricity). P. Radgen and E. Jochem, Wirtschaftsministerium Baden-Württemberg

  • Steen W (1991) Laser material processing. Springer, London

    Book  Google Scholar 

  • Stepanov A, Piili H, Salminen A (2010) Color change in laser cutting of paper material. In: 29th International congress on applications of lasers and electro-optics, ICALEO 2010—Congress Proceedings

  • Szymani R, Dickinson FE (1975) Recent developments in wood machining processes: novel cutting techniques. Wood Sci Technol 9(2):113–128

    Article  Google Scholar 

  • Yusoff N, Ismail SR, Mamat A, Ahmad-Yazid A (2008) Selected Malaysian wood CO2-laser cutting parameters and cut quality. Am J Appl Sci 5(8):990–996

    Article  Google Scholar 

  • Zhou BH, Mahdavian SM (2004) Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser. J Mater Process Technol 146(2):188–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work in the framework of the PhD school DokIn'Holz funded by the Austrian Federal Ministry of Science, Research and Economy and the companies Fritz Egger GmbH, Doka Österreich GmbH and Springer Maschinenfabrik AG is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Martínez-Conde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Conde, A., Krenke, T., Frybort, S. et al. Review: Comparative analysis of CO2 laser and conventional sawing for cutting of lumber and wood-based materials. Wood Sci Technol 51, 943–966 (2017). https://doi.org/10.1007/s00226-017-0914-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0914-9

Keywords

Navigation