Skip to main content
Log in

Optimisation and characterisation of bio-oil produced by Acacia mangium Willd wood pyrolysis

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this research was to characterise the bio-oil produced by pyrolysis of Acacia mangium wood through gas chromatography–mass spectrometry (GC–MS). Experimental study was employed using two experiment models: two-level factorial design (TLFD) and response surface methodology–Box–Behnken (RSM–BB). TLFD was used to analyse the final temperature, heating rate and particle size effect on the bio-oil yield, while RSM–BB was conducted to determine the optimum conditions for bio-oil production. The statistical analysis showed that the factors of pyrolysis temperature and particle size had the greater effect, while the heating rate was significant, but had a lesser effect. By utilising RSM, these factors presented the optimal conditions obtained at pyrolysis temperature of 499.57 °C, heating rate of 12 °C min−1 and particle size of 0.46 mm. With the GC–MS result, it was observed that the percentage of phenol and derivatives was much higher than the rest of the components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu NR, Foppa PE, Riva G, Romero RO (2010) Caracterización energética del Marabú (Energetic characterization of Marabu). DYNA Ingeniería e Industria 85(7):581–592 (In Spanish)

    Article  Google Scholar 

  • Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev 16:5101–5109

    Article  CAS  Google Scholar 

  • Amen-Chen C, Pakdel H, Roy C (1997) Separation of phenols from Eucalyptus wood tar. Biomass Bioenerg 13:25–37

    Article  CAS  Google Scholar 

  • Amidon TE, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ, Whitcomb PJ (2015) DOE simplified: practical tools for effective experimentation. CRC Press, New York

    Book  Google Scholar 

  • Arteaga Crespo Y, Abreu Naranjo R, Vargas Burgos JC, Glauco Sanchez C, Sanchez Sanchez EM (2015) Thermogravimetric analysis of thermal and kinetic behavior of acacia mangium wood. Wood Fiber Sci 47:327–335

    CAS  Google Scholar 

  • Aslan N, Cebeci Y (2007) Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 86:90–97

    Article  CAS  Google Scholar 

  • ASTM-E1757-01 (2007) Standard practice for preparation of biomass for compositional analysis, ASTM International, West Conshohocken, PA

  • Ayllón M, Aznar M, Sánchez JL, Gea G, Arauzo J (2006) Influence of temperature and heating rate on the fixed bed pyrolysis of meat and bone meal Chem Eng J 121:85–96 d a fixed-bed reactor: effects of pyrolysis parameters on product yields and characterization of products. Energy 64:1002–1025

    Google Scholar 

  • Aysu T, Küçük MM (2014) Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products. Energy 64:1002–1025. doi:10.1016/j.energy.2013.11.053

    Article  CAS  Google Scholar 

  • Ba T, Chaala A, Garcia-Perez M, Rodrigue D, Roy C (2004) Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energy Fuels 18:704–712

    Article  CAS  Google Scholar 

  • Barlin B, Gunawan G, Arifin A, Pratiwi DK (2016) Thermal evolution profile analysis for pyrolysis of coal—Acacia Mangium Wood Blends. IJTech 7(5):881–888

    Article  Google Scholar 

  • Bertero M, de la Puente G, Sedran U (2012) Fuels from bio-oils: bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 95:263–271

    Article  CAS  Google Scholar 

  • Bertero M, Gorostegui HA, Orrabalis CJ, Guzmán CA, Calandri EL, Sedran U (2014) Characterization of the liquid products in the pyrolysis of residual chañar and palm fruit biomasses. Fuel 116:409–414

    Article  CAS  Google Scholar 

  • Bhattacharjee N (2016) Bio-oil production from fast pyrolysis of aquatic prostate herb (Achyranthes paludosa) Int J Latest Tech Eng Manag Appl Sci vol:9

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    Article  CAS  Google Scholar 

  • Chen T, Zhang J, Wu J (2016) Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model. Bioresour Technol 211:502–508

    Article  CAS  PubMed  Google Scholar 

  • Choi G-G, Oh S-J, Lee S-J, Kim J-S (2015) Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells. Bioresour Technol 178:99–107

    Article  CAS  PubMed  Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18:590–598

    Article  CAS  Google Scholar 

  • Demiral İ, Şensöz S (2006) Fixed-bed pyrolysis of Hazelnut (Corylus Avellana L.) Bagasse: influence of pyrolysis parameters on product yields. Energy Source Part A Recovery Util Environ Eff 28:1149–1158

    Article  CAS  Google Scholar 

  • Donald LK (2004) Biomass for renewable energy and fuels. In: Cutler JC (ed) Encyclopedia of Energy. Elsevier, New York, pp 193–212

    Google Scholar 

  • Effendi A, Gerhauser H, Bridgwater AV (2008) Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sustain Energy Rev 12:2092–2116

    Article  CAS  Google Scholar 

  • Fonts I, Azuara M, Gea G, Murillo MB (2009) Study of the pyrolysis liquids obtained from different sewage sludge. J Anal Appl Pyrolysis 85:184–191

    Article  CAS  Google Scholar 

  • Gayubo AG, Valle B, Aguayo AT, Olazar M, Bilbao J (2010) Olefin production by catalytic transformation of crude bio-oil in a two-step process. Ind Eng Chem Res 49:123–131

    Article  CAS  Google Scholar 

  • Gronli MG, Várhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41:4201–4208

    Article  CAS  Google Scholar 

  • Gu X, Ma X, Li L, Liu C, Cheng K, Li Z (2013) Pyrolysis of poplar wood sawdust by TG–FTIR and Py–GC/MS. J Anal Appl Pyrolysis 102:16–23

    Article  CAS  Google Scholar 

  • Güllü D, Demirbas A (2001) Biomass to methanol via pyrolysis process. Energy Convers Manag 42:1349–1356

    Article  Google Scholar 

  • Isa KM, Daud S, Hamidin N, Ismail K, Saad SA, Kasim FH (2011) Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Ind Crop Prod 33:481–487

    Article  CAS  Google Scholar 

  • Islam M, Beg M (2004) The fuel properties of pyrolysis liquid derived from urban solid wastes in Bangladesh. Bioresour Technol 92:181–186

    Article  CAS  PubMed  Google Scholar 

  • Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5:4952–5001

    Article  CAS  Google Scholar 

  • Jeguirim M, Trouvé G (2009) Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol 100:4026–4031

    Article  CAS  PubMed  Google Scholar 

  • Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140

    Article  CAS  Google Scholar 

  • Kiran B, Pathak K, Kumar R, Deshmukh D (2016) Statistical optimization using central composite design for biomass and lipid productivity of microalga: a step towards enhanced biodiesel production. Ecol Eng 92:73–81

    Article  Google Scholar 

  • Krisnawati H, Kallio M, Kanninen M (2011) Acacia mangium Willd.: ecology, silviculture and productivity. CIFOR (C. f. I. F. Research Ed.). Indonesia

  • Liu S (2010) Woody biomass: niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis. Biotechnol Adv 28:563–582

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Amidon TE, Francis RC, Ramarao BV, Lai Y-Z, Scott GM (2006) From forest biomass to chemicals and energy Biorefinery initiative in New York State. Ind Biotechnol 2:113–120

    Article  CAS  Google Scholar 

  • Luo Z, Wang S, Liao Y, Zhou J, Gu Y, Cen K (2004) Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy 26:455–462

    Article  CAS  Google Scholar 

  • Marsoem SN, Irawati D (2016) Basic properties of Acacia mangium and Acacia auriculiformis as a heating fuel. In: AIP Conference Proceedings, 2016. doi:10.1063/1.4958551

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  PubMed  Google Scholar 

  • Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials—a review. Bioresour Technol 68:71–77

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889

    Article  CAS  Google Scholar 

  • Muley PD, Henkel C, Abdollahi KK, Marculescu C, Boldor D (2016) A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor. Energy Convers Manag 117:273–280

    Article  CAS  Google Scholar 

  • Önal EP, Uzun BB, Pütün AE (2011) Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process Technol 92:879–885

    Article  Google Scholar 

  • Oramahi HA, Diba F (2013) Maximizing the production of liquid smoke from bark of durio by studying its potential compounds. Procedia Environ Sci 17:60–69

    Article  CAS  Google Scholar 

  • Pappa A, Tzamtzis N, Statheropoulos M, Fasseas C (2000) The pyrolytic behavior of Pinus halepensis needles observed by transmission light microscopy and stereoscopy. J Anal Appl Pyrolysis 55(2):195–202

    Article  CAS  Google Scholar 

  • Qu T, Guo W, Shen L, Xiao J, Zhao K (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose cellulose, and lignin. Ind Eng Chem Res 50:10424–10433

    Article  CAS  Google Scholar 

  • Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renew Sustain Energy Rev 50:1081–1096

    Article  CAS  Google Scholar 

  • Shen DK, Gu S, Jin B, Fang MX (2011) Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresour Technol 102:2047–2052

    Article  CAS  PubMed  Google Scholar 

  • Sobeih KL, Baron M, Gonzalez-Rodriguez J (2008) Recent trends and developments in pyrolysis–gas chromatography. J Chromatogr A 1186:51–66

    Article  CAS  PubMed  Google Scholar 

  • Turnbull JW, Midgley SJ, Cossalter C (1988) Tropical acacias planted in Asia: an overview ACIAR Proc 82

  • Valle B, Gayubo Ana G, Atutxa A, Alonso A, Bilbao J (2007) Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil. Int J Chem React Eng. doi:10.2202/1542-6580.1559

    Google Scholar 

  • Vamvuka D, Kakaras E, Kastanaki E, Grammelis P (2003) Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite☆. Fuel 82:1949–1960

    Article  CAS  Google Scholar 

  • Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16:4406–4414

    Article  CAS  Google Scholar 

  • Yorgun S, Yıldız D (2015) Slow pyrolysis of paulownia wood: effects of pyrolysis parameters on product yields and bio-oil characterization. J Anal Appl Pyrolysis 114:68–78

    Article  CAS  Google Scholar 

  • Zanzi R, Sjöström K, Björnbom E (2002) Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy 23:357–366

    Article  CAS  Google Scholar 

  • Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48:87–92

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Biomass Laboratory of the Department of Thermal and Fluid Engineering, State University of Campinas, Brazil. The authors would also like to thank the anonymous reviewers and editor for their thoughtful comments that contributed to the improvement in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasiel Arteaga Crespo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo, Y.A., Naranjo, R.A., Quitana, Y.G. et al. Optimisation and characterisation of bio-oil produced by Acacia mangium Willd wood pyrolysis. Wood Sci Technol 51, 1155–1171 (2017). https://doi.org/10.1007/s00226-017-0913-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0913-x

Keywords

Navigation