Skip to main content

Advertisement

Log in

Reaction mechanisms inhibiting the release of aqueous extracts from merbau heartwood by iron(II) and copper(II)

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Extractive bleeding with adjacent staining from merbau heartwood is a problem affecting exterior applications. Although the inhibition method of the exudate has been performed via complexation of the aqueous extracts (AE) and iron/copper ions, its mechanisms remain unclear. The aim of this study is to clarify the complexation mechanisms of AE with iron/copper ions. The results obtained from both 13C NMR and FTIR analyses show that the primary component of AE is catechin-/epicatechin-based condensed tannin. Further results of the complexation test under heating conditions revealed that the catechol units in condensed tannin of AE could efficiently complex iron ion, forming the bis-bidentate complex, leading to decreased water solubility of AE. However, AE could not complex copper ion to form the insoluble AE–Cu complex directly at ambient temperature, and it relied on the o-quinone, which was derived from the heated AE at 100 °C, complexed with copper ion to form the bis-bidentate complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abakumov GA, Lobanov AV, Cherkasov VK, Razuvaev GA (1981) The synthesis and properties of o-semiquinolate copper complexes. Inorg Chim Acta 49:135–138

    Article  CAS  Google Scholar 

  • Barbehenn RV, Constabel PC (2011) Tannins in plant-herbivore interactions. Phytochemistry 72(13):1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Bellotti N, Deyá C, del Amo B, Romagnoli R (2010) Antifouling paints with zinc “tannate”. Ind Eng Chem Res 49(7):3386–3390

    Article  CAS  Google Scholar 

  • Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139(2):652–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke E, Slavik N, Bonura T, Shake C, Bureau S, Connelly D, Cedar SL, Nebelsick A, Stuart B (2010) Understanding extractive bleed. Coat Tech 7(3):48–53

    Google Scholar 

  • Davis AL, Cai Y, Davies AP, Lewis JR (1996) 1H and 13C NMR assignments of some green tea polyphenols. Magn Reson Chem 34(11):887–890

    Article  CAS  Google Scholar 

  • Diatto P, Martini M, Spinolo G (1988) Far-infrared absorption spectra of Ni, Co and Fe dihalides hydrates. J Phys Chem Solids 49(12):1469–1475

    Article  CAS  Google Scholar 

  • Doglia SM, Martini M, Spinolo G, Villa AM (1992) The NIR absorption spectrum of water in FeCl2·4H2O single crystals. J Phys Chem Solids 53(9):1237–1243

    Article  CAS  Google Scholar 

  • Gao J, Zhang B, Chang J (2004) Induced discoloration of buerger maple during drying process. For Stud China 6(2):50–55

    Article  Google Scholar 

  • García DE, Glasser WG, Pizzi A, Paczkowski SP, Laborie MP (2016) Modification of condensed tannins: from polyphenol chemistry to materials engineering. New J Chem 40:36–49

    Article  Google Scholar 

  • Hemingway RW, McGraw GW (1978) Formaldehyde condensation products of model phenols for conifer bark tannins. J Liq Chromatogr 1(2):163–179

    Article  CAS  Google Scholar 

  • Hillis WE, Yazaki Y (1973) Polyphenols of Intsia heartwoods. Phytochemistry 12(10):2491–2495

    Article  CAS  Google Scholar 

  • Hsiao NC, Chang TC, Hsu FL, Chang ST (2016) Environmentally benign treatments for inhibiting the release of aqueous extracts from merbau heartwood. Wood Sci Technol 50(2):333–348

    Article  CAS  Google Scholar 

  • Hu CS, Jiang GF, Xiao M, Zhou JH, Yi Z (2012) Effects of heat treatment on water-soluble extractives and color changes of merbau heartwood. J Wood Sci 58(5):465–469

    Article  CAS  Google Scholar 

  • Hu CS, Jiang GF, Zhou JH, Xiao M, Yi Z (2013) Effects of the thickness of the heat-treated wood specimen on water-soluble extractives and mechanical properties of merbau heartwood. BioResources 8(1):603–611

    Article  Google Scholar 

  • Karamać M (2009) Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts. Int J Mol Sci 10(12):5485–5497

    Article  PubMed  PubMed Central  Google Scholar 

  • Kear G, Wú HZ, Jones MS (2008) Corrosion of ferrous- and zinc-based materials in CCA, ACQ and CuAz timber preservative aqueous solutions. Mater Struct 41(8):1405–1417

    Article  CAS  Google Scholar 

  • Kennedy JA, Powell HKJ (1985) Polyphenol interactions with aluminium(III) and iron(III): their possible involvement in the podzolization process. Aust J Chem 38(6):879–888

    Article  CAS  Google Scholar 

  • Kim S, Kim HJ (2003) Curing behavior and viscoelastic properties of pine and wattle tannin-based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy. J Adhes Sci Technol 17(10):1369–1383

    Article  CAS  Google Scholar 

  • Koch G, Richter HG, Schmitt U (2006) Topochemical investigation on phenolic deposits in the vessels of afzelia (Afzelia spp.) and merbau (Intsia spp.) heartwood. Holzforschung 60(6):583–588

    Article  CAS  Google Scholar 

  • Makris DP, Rossiter JT (2000) Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (quercetin 3-O-rhamnosylglucoside) in aqueous model systems. J Agric Food Chem 48(9):3830–3838

    Article  CAS  PubMed  Google Scholar 

  • McDonald M, Mila I, Scalbert A (1996) Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. J Agric Food Chem 44(2):599–606

    Article  CAS  Google Scholar 

  • McLaren K (1976) An introduction to instrumental shade passing and sorting and a review of recent developments. J Soc Dyers Colour 92(9):317–326

    Article  Google Scholar 

  • Mellor DP (1964) Historical background and fundamental concepts. In: Dwyer FP, Mellor DP (eds) Chelating agents and metal chelates. Academic Press, New York, pp 1–48

    Chapter  Google Scholar 

  • Mendoza-Wilson AM, Santacruz-Ortega H, Balandrán-Quintana RR (2011) Spectroscopic and computational study of the major oxidation products formed during the reaction of two quercetin conformers with a free radical. Spectrochim Acta Part A 81(1):481–488

    Article  CAS  Google Scholar 

  • Newman RH, Porter LJ, Foo LY, Johns SR, Willing RI (1987) High-resolution 13C NMR studies of proanthocyanidin polymers (condensed tannins). Magn Reson Chem 25(2):118–124

    Article  CAS  Google Scholar 

  • Nkansah K, Adedipeb O, Dawson-Andoh B, Atta-Obeng E, Slahor J, Osborn L (2015) Determination of concentration of ACQ wood preservative components by UV-Visible spectroscopy coupled with multivariate data analysis. Chemometr Intell Lab 147(15):157–166

    Article  CAS  Google Scholar 

  • Ogata T, Morisada S, Oinuma Y, Seida Y, Nakano Y (2011) Preparation of adsorbent for phosphate recovery from aqueous solutions based on condensed tannin gel. J Hazard Mater 192(2):698–703

    Article  CAS  PubMed  Google Scholar 

  • Oo CW, Kassim MJ, Pizzi A (2009) Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper(II) and lead(II). Ind Crops Prod 30(1):152–161

    Article  CAS  Google Scholar 

  • Özacar M, Soykan C, Şengil İA (2006) Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tannin resins. J Appl Polym Sci 102(1):786–797

    Article  Google Scholar 

  • Pizzi A (1979) Phenolic and tannin-based adhesive resins by reactions of coordinated metal ligands. I. Phenolic chelates. J Appl Polym Sci 24(5):1247–1255

    Article  CAS  Google Scholar 

  • Pizzi A (2003) Natural phenolic adhesives I: Tannin. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology. CRC Press, Dekker, pp 573–587

    Google Scholar 

  • Pizzi A, Stephanou A (1994) A 13C NMR study of polyflavonoid tannin adhesive intermediates. II. colloidal state reactions. J Appl Polym Sci 51(13):2125–2130

    Article  CAS  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30(12):3875–3883

    Article  CAS  Google Scholar 

  • Slabbert N (1992) Complexation of condensed tannins with metal ions. In: Hemingway RW, Laks PE (eds) Plant polyphenols: synthesis, properties, significance. Basic Life Sciences. Springer, New York, pp 437–447

    Google Scholar 

  • Soto R, Freer J, Baeza J (2005) Evidence of chemical reactions between di- and poly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark. Bioresour Technol 96(1):95–101

    Article  CAS  Google Scholar 

  • Tanaka H, Henning J, Lutz HD, Kliche G (1987) Infrared and raman spectra of CuCl2·2(H,D)2O and K2CuCl4·2(H,D)2O. vibrational modes, assignment and coupling of the water librations. Spectrochim Acta Part A 43(3):395–400

    Article  Google Scholar 

  • Thaman RR, Thomson LJ, DeMeo R, Arekit R, Elevitch CR (2011) Intsia bijuga (vesi). In: Elevitch CR (ed) Specialty crops for the pacific islands. Permanent Agriculture Resources, Hawaii, p 800

    Google Scholar 

  • Thompson D, Pizzi A (1995) Simple 13C-NMR methods for quantitative determinations of polyflavonoid tannin characteristics. J Appl Polym Sci 55(1):107–112

    Article  CAS  Google Scholar 

  • Tung YT, Chang WC, Chen PS, Chang TC, Chang ST (2011) Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds. J Sep Sci 34(7):844–851

    Article  CAS  PubMed  Google Scholar 

  • Ung YT, Cooper PA (2005) Copper stabilization in ACQ-D treated wood: retention, temperature and species effects. Holz Roh Werkst 63(3):186–191

    Article  CAS  Google Scholar 

  • Verbist JJ, Hamilton WC, Koetzle TF, Lehmann MS (1972) Neutron diffraction study of iron(II) chloride tetrahydrate, FeCl2· 4H2O. J Chem Phys 56(7):3257–3264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Zong-Qin Guo (Kun-Jin Industrial Co., Ltd., Ilan) and Mr. David Yeh (Jie-Lok International, Inc., Taichung) for the support of materials and Assistant Professor Sheng-Fong Lo for the wood identification (Department of Forestry and Nature Resources, National Ilan University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tzen Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiao, NC., Chang, TC., Lin, HY. et al. Reaction mechanisms inhibiting the release of aqueous extracts from merbau heartwood by iron(II) and copper(II). Wood Sci Technol 51, 653–668 (2017). https://doi.org/10.1007/s00226-017-0891-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0891-z

Keywords

Profiles

  1. Tzu-Cheng Chang