Sorption and thermodynamic properties of wood of Pinus canariensis C. Sm. ex DC. buried in volcanic ash during eruption

Abstract

The hygroscopicity and thermodynamic properties of Pinus canariensis wood buried in volcanic ash, dating from 1100 BC, were studied and compared with recently felled juvenile and mature wood of the same species. The sorption isotherms were obtained by the saturated salt method at 35 and 50 °C. The isotherms were fitted using the Guggenheim–Anderson–de Boer model. The thermodynamic parameters were determined following the Clausius–Clapeyron integration method. To understand the behaviour of each type of wood, the chemical composition, infrared spectra and X-ray diffractograms were determined for each sample. The mature wood has a higher sugar content and lower extractive content than the juvenile and the buried wood. For both temperatures, the isotherm of the mature wood is above the isotherm of the juvenile wood and this, in turn, is above the isotherm of the buried wood, primarily influenced by the higher cellulose and hemicellulose contents and lower extractives content in the mature wood, resulting in a higher number of accessible –OH groups. Degradation of the buried wood due to high temperatures explains why its isotherms are below the isotherms of the recent wood. The energy involved in the desorption process is greater than in adsorption. Similarly, more energy is involved in the mature wood than in the juvenile wood, and the energy involved in the juvenile wood is greater than in the buried wood.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andersson S, Serimaa R, Paakkari T, Saranpaa P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537

    Google Scholar 

  2. Andersson S, Wikberg H, Pesonen E, Maunu SL, Serimaa R (2004) Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees Struct Funct 18:346–353

    CAS  Article  Google Scholar 

  3. Arevalo-Pinedo A, Giraldo-Zuñiga AD, Dos Santos FL, Arevalo ZDS, Arevalo RP (2004) Sorption isotherms experimental data and mathematical models for murici pulp (Byrsonima sericea). In: Proceedings of the 14th international drying symposium (IDS 2004), August 22–25, Sao Paulo, Brazil, vol A, pp 634–639

  4. Avramidis S (1997) The basics of sorption. In: International conference on wood-water relations, June 16–17, Copenhagen, Denmark, pp 1–16

  5. Avramidis S, Dubois J (1992) Sorption energies of some Canadian species. Holzforschung 46:177–179

    CAS  Article  Google Scholar 

  6. Balakshin MY, Capanema EA, Goldfarb B, Frampton J, Kadla JF (2005) NMR studies on Fraser fir Abies fraseri (Pursh) Poir. lignins. Holzforschung 59:488–496

    CAS  Article  Google Scholar 

  7. Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256

    CAS  Article  Google Scholar 

  8. Blanchette RA (2000) A review of microbial deterioration found in archaeological wood from different environments. Int Biodeterior Biodegrad 46:189–204

    Article  Google Scholar 

  9. Bratasz L, Kozlowska A, Kozlowski R (2012) Analysis of water adsorption by wood using the Guggenheim–Anderson–de Boer equation. Eur J Wood Prod 70:445–451

    CAS  Article  Google Scholar 

  10. Chang HT, Chang ST (2002) Moisture excluding efficiency and dimensional stability of wood improved by acylation. Bioresour Technol 85:201–204

    CAS  Article  PubMed  Google Scholar 

  11. Choong ET, Achmadi SS (1991) Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci 23:185–196

    CAS  Google Scholar 

  12. Christensen GN, Kelsey KE (1959) The rate of sorption of water vapor by wood. Holz Roh Werkst 17:178–188

    CAS  Article  Google Scholar 

  13. Climent JM, Gil L, Pardos JA (1993) Heartwood and sapwood development and its relationship to growth and environment in Pinus canariensis Chr.Sm ex DC. J. For Ecol Manage 59:165–174

    Article  Google Scholar 

  14. Climent JM, Gil L, Pardos JA (1998) Xylem anatomical traits related to resinous heartwood formation in Pinus canariensis Sm. Trees 12:139–145

    Google Scholar 

  15. Climent JM, Chambel M, Pérez E, Gil L, Pardos JA (2002) Relationship between heartwood radius and early radial growth, tree age, and climate in Pinus canariensis. Can J For Res 32:103–111

    Article  Google Scholar 

  16. Easty DB, Malcolm EW (1982) Estimation of pulping yield in continuous digesters from carbohydrate and lignin determinations. Tappi J 65:78–80

    CAS  Google Scholar 

  17. Engelund ET, Thygesen LG, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood-water interactions. Wood Sci Technol 47:141–161

    CAS  Article  Google Scholar 

  18. Esteban LG, Gasson P, Climent JM, de Palacios P, Guindeo A (2005) The wood of Pinus canariensis and its resinous heartwood. IAWA J 26:69–77

    Article  Google Scholar 

  19. Esteban LG, Fernandez FG, Casasus AG, de Palacios PD, Gril J (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann For Sci 63:309–317

    Article  Google Scholar 

  20. Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Cano NN (2008a) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci 40:111–121

    CAS  Google Scholar 

  21. Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Conde M, Baonza V (2008b) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751

    CAS  Article  Google Scholar 

  22. Esteban LG, de Palacios P, Garcia Fernandez F, Martin JA, Genova M, Fernandez-Golfin JI (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1170 ± 40 BP. Wood Sci Technol 43:140–151

    Article  Google Scholar 

  23. Esteban LG, de Palacios P, Fernandez FG, Garcia-Amorena I (2010) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodegrad 64:371–377

    CAS  Article  Google Scholar 

  24. Esteban LG, Simon C, Fernandez FG, de Palacios P, Martín-Sampedro R, Eugenio ME, Hosseinpourpia R (2015) Juvenile and mature wood of Abies pinsapo Boissier: sorption and thermodynamic properties. Wood Sci Technol 49:725–738

    CAS  Article  Google Scholar 

  25. Fengel D (1991) Aging and fossilization of wood and its components. Wood Sci Technol 25:153–177

    CAS  Google Scholar 

  26. Fengel D, Wegener G (1983) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  27. Fernandez FG, Esteban LG, de Palacios P, Simon C, Garcia-Iruela A, de la Fuente J (2014) Sorption and thermodynamic properties of Terminalia superba Engl. & Diels. and Triplochiton scleroxylon K. Schum. through the 15, 35 and 50°C sorption isotherms. Eur J Wood Prod 72:99–106

    Article  Google Scholar 

  28. Freundt A (2003) Entrance of hot pyroclastic flows into the sea: experimental observations. Bull Volcanol 65:144–164

    Google Scholar 

  29. Genova M, Santana C (2006) Crecimiento y longevidad en el pino canario (Pinus canariensis Smith.). Invest Agrar Sist Recur For 15:296–307

    Article  Google Scholar 

  30. Gurioli L, Zanella E, Gioncada A, Sbrana A (2012) The historic magmatic-hydrothermal eruption of the Breccia di Commenda, Vulcano, Italy. Bull Volcanol 74:1235–1254

    Article  Google Scholar 

  31. Hernandez RE (2007) Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39:132–145

    CAS  Google Scholar 

  32. Hill C (2006) Wood modification. Chemical, thermal and other proccesses. Wiley, England

    Google Scholar 

  33. Hill CAS, Jones D (1996) The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides. The effect of chain length. Holzforschung 50:457–462

    CAS  Article  Google Scholar 

  34. Hill CAS, Jones D (1999) Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung 53:267–271

    CAS  Article  Google Scholar 

  35. Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537

    CAS  Article  Google Scholar 

  36. Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514

    CAS  Article  Google Scholar 

  37. Huo D, Fang G, Yang Q, Han S, Deng Y, Shen K, Lin Y (2013) Enhancement of eucalypt chips’ enzymolysis efficiency by a combination method of alkali impregnation and refining pretreatment. Bioresour Technol 150:73–78

    CAS  Article  PubMed  Google Scholar 

  38. Iiyama K, Kasuya N, Lam TBT, Nakano J, Sakaguchi H (1988) Chemical characterization of ancient buried wood. Holzforschung 42:5–10

    CAS  Article  Google Scholar 

  39. Illic J, Northway R, Pongracic S (2003) Juvenile wood characteristics, effects and identification. Literature review. Forest and Wood Products Research and Development Corporation

  40. Jahan MS, Mun SP (2005) Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis). Wood Sci Technol 39:367–373

    CAS  Article  Google Scholar 

  41. Jannot Y, Kanmogne A, Talla A, Monkam L (2006) Experimental determination and modelling of water desorption isotherms of tropical woods: afzelia, ebony, iroko, moabi and obeche. Holz Roh Werkst 64:121–124

    CAS  Article  Google Scholar 

  42. Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A (2006) Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol 40:709–720

    CAS  Article  Google Scholar 

  43. Larson PR (1966) Changes in chemical composition of wood cell walls associated with age in Pinus resinosa. For Prod J 16:37–45

    CAS  Google Scholar 

  44. Lenth CA, Kamke FA (2001) Equilibrium moisture content of wood in high-temperature pressurized environments. Wood Fiber Sci 33:104–118

    CAS  Google Scholar 

  45. Li XJ, Cao ZY, Wei ZY, Feng QY, Wang JS (2011) Equilibrium moisture content and sorption isosteric heats of five wheat varieties in China. J Stored Prod Res 47:39–47

    Article  Google Scholar 

  46. Lionetto F, Del Sole R, Cannoletta D, Vasapollo G, Maffezzoli A (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5:1910–1922

    CAS  Article  Google Scholar 

  47. Majka J, Olek W (2008) Sorption properties of mature and juvenile lime wood (Tilia sp.). Folia For Pol Ser B 39:65–75

    Google Scholar 

  48. Major JJ, Pierson TC, Hoblitt RP, Moreno H (2013) Pyroclastic density currents associated with the 2008-2009 eruption of Chaiten Volcano (Chile): forest disturbances, deposits, and dynamics. Andean Geol 40:324–358

    Google Scholar 

  49. Mangas J, Pérez-Torrado JF, Gimeno D, Hansen A, Paterne M, Guillou H (2002) Caracterización de los materiales volcánicos asociados a las erupciones holocenas de la Caldera de Pinos de Galdar y edificios volcánicos adyacentes (Gran Canaria) (Characterisation of the volcanic materials associated with the Holocene eruptions of Caldera de Pinos, Gáldar, and adjacent volcanic edifices (Gran Canaria)) (In Spanish). Geogaceta 32:49–52

    Google Scholar 

  50. McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Eng 60:157–165

    Article  Google Scholar 

  51. Mihranyan A, Llagostera AP, Karmhag R, Stromme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442

    CAS  Article  PubMed  Google Scholar 

  52. Militz H, Busetto D, Hapla F (2003) Investigation on natural durability and sorption properties of Italian chestnut (Castanea sativa Mill.) from coppice stands. Holz Roh Werkst 61:133–141

    Article  Google Scholar 

  53. Murata K, Watanabe Y, Nakano T (2013) Effect of thermal treatment on fracture properties and adsorption properties of Spruce wood. Materials 6:4186–4197

    Article  Google Scholar 

  54. Neimsuwan T, Wang S, Taylor AM, Rials TG (2008) Statics and kinetics of water vapor sorption of small loblolly pine samples. Wood Sci Technol 42:493–506

    CAS  Article  Google Scholar 

  55. Nogales J, Schmincke HU (1969) El Pino enterrado de la Cañada de las Arenas (Gran Canaria) (The buried pine of Cañada de las Arenas (Gran Canaria)) (In Spanish). Notebooks of Canary Islands Botany No. 5. Llano de la Piedra plant acclimatisation garden, Santa Lucia de Tirajana

  56. Olek W, Majka J, Czaijkowski L (2013) Sorption isotherms of thermally modified wood. Holzforschung 67:183–191

    CAS  Article  Google Scholar 

  57. Peralta PN, Bangi AP, Lee AWC (1997) Thermodynamics of moisture sorption by the giant-timber bamboo. Holzforschung 51:177–182

    CAS  Article  Google Scholar 

  58. Peura M, Saren MP, Laukkanen J, Nygard K, Andersson S, Saranpaa P, Paakkari T, Hamalainen K, Serimaa R (2008) The elemental composition, the microfibril angle distribution and the shape of the cell cross-section in Norway spruce xylem. Trees Struct Funct 22:499–510

    Article  Google Scholar 

  59. Popescu CM, Hill CAS (2013) The water vapour adsorption-desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym Degrad Stabil 98:1804–1813

    CAS  Article  Google Scholar 

  60. Rautkari L, Hill CAS, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J Mater Sci 48:6352–6356

    CAS  Article  Google Scholar 

  61. Rautkari L, Honkanen J, Hill CAS, Ridley-Ellis D, Hughes M (2014) Mechanical and physical properties of thermally modified Scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180°C. Eur J Wood Prod 72:33–41

    Article  Google Scholar 

  62. Rowell RM (1980) Distribution of reacted chemicals in southern pine modified with methyl isocyanate. Wood Sci 13:102–110

    CAS  Google Scholar 

  63. Rowell RM (2005) Wood chemistry and wood composites. Taylor & Francis, Florida

    Google Scholar 

  64. Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blacksburg, VA

  65. Simon C, Esteban LG, de Palacios P, Fernandez FG, Martín-Sampedro R, Eugenio ME (2015) Thermodynamic analysis of water vapour sorption behaviour of juvenile and mature wood of Abies alba Mill. J Mater Sci 50:7282–7292

    CAS  Article  Google Scholar 

  66. Singh AP (2012) A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J Cult Herit 13:S16–S20

    Article  Google Scholar 

  67. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP) http://www.nrel.gov/biomass/pdfs/42619.pdf Accessed 27 Mar 2015

  68. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker S (2011) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP) http://www.nrel.gov/biomass/pdfs/42618.pdf Accessed 27 Mar 2015

  69. Song KL, Yin YF, Salmen L, Xiao FM, Jiang XM (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49:1734–1742

    CAS  Article  Google Scholar 

  70. Stamm AJ, Hansen LA (1937) Minimizing wood shrinkage and swelling. Effect of heating in various gases. Ind Eng Chem 29:831–833

    CAS  Article  Google Scholar 

  71. Telis VRN, Gabas AL, Menegalli FC, Telis-Romero J (2000) Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochim Acta 343:49–56

    CAS  Article  Google Scholar 

  72. Themelin A, Rebollo J, Thibaut A (1997) Method for defining the behaviour of lignocellulosic produces at sorption: application to tropical wood species. In: International conference on wood-water relations. June 16–17, Copenhagen, Denmark, pp 17–32

  73. Tsoumis G (1991) Science and technology of wood. Kluwer Academic Publishers, New York

    Google Scholar 

  74. Vaaler D, Syverud K, Seem B, Moe ST (2005) Estimating the pulping yield by carbohydrate analysis. Tappi J 4:23–27

    CAS  Google Scholar 

  75. Viollaz PE, Rovedo CO (1999) Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. J Food Eng 40:287–292

    Article  Google Scholar 

  76. Voight B, Davis MJ (2000) Emplacement temperatures of the November 22, 1994 nuee ardente deposits, Merapi Volcano, Java. J Volcanol Geotherm Res 100:371–377

    CAS  Article  Google Scholar 

  77. Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1:253–277

    CAS  Article  Google Scholar 

  78. Weichert L (1963) Investigations on sorption and swelling of spruce, beech and compressed beech wood between 20° and 100°. Holz Roh Werkst 21:290–300

    CAS  Article  Google Scholar 

  79. Willems W, Mai C, Militz H (2013) Thermal wood modification chemistry analysed using van Krevelen’s representation. Int Wood Prod J 4:166–171

    Article  Google Scholar 

  80. Yokoyama T, Kadla JF, Chang HM (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agric Food Chem 50:1040–1044

    CAS  Article  PubMed  Google Scholar 

  81. Zaihan J, Hill CAS, Hashim WS, Dahlan JM, Sun DY (2011) Analysis of the water vapour sorption isotherms of oil palm trunk and rubberwood. J Trop For Sci 23:97–105

    Google Scholar 

  82. Zobel B, Matthias M, Roberds JH, Kellison RC (1968) Moisture content of southern pine trees. Technical Reports 37 School of Forest Resources NC State Univ Raleigh, NC

Download references

Acknowledgements

This study is part of the AGL2009-12801 project of the 2008–2011 Spanish National Plan for Scientific Research, Development and Technological Innovation, funded by the Spanish Ministry of Science and Innovation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristina Simón.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simón, C., Esteban, L.G., de Palacios, P. et al. Sorption and thermodynamic properties of wood of Pinus canariensis C. Sm. ex DC. buried in volcanic ash during eruption. Wood Sci Technol 51, 517–534 (2017). https://doi.org/10.1007/s00226-016-0884-3

Download citation

Keywords

  • Equilibrium Moisture Content
  • Crystallinity Index
  • Isosteric Heat
  • Juvenile Wood
  • Mature Wood