Advertisement

Wood Science and Technology

, Volume 51, Issue 3, pp 517–534 | Cite as

Sorption and thermodynamic properties of wood of Pinus canariensis C. Sm. ex DC. buried in volcanic ash during eruption

  • Cristina Simón
  • Luis García Esteban
  • Paloma de Palacios
  • Francisco García Fernández
  • Alberto García-Iruela
  • Raquel Martín-Sampedro
  • María E. Eugenio
Original

Abstract

The hygroscopicity and thermodynamic properties of Pinus canariensis wood buried in volcanic ash, dating from 1100 BC, were studied and compared with recently felled juvenile and mature wood of the same species. The sorption isotherms were obtained by the saturated salt method at 35 and 50 °C. The isotherms were fitted using the Guggenheim–Anderson–de Boer model. The thermodynamic parameters were determined following the Clausius–Clapeyron integration method. To understand the behaviour of each type of wood, the chemical composition, infrared spectra and X-ray diffractograms were determined for each sample. The mature wood has a higher sugar content and lower extractive content than the juvenile and the buried wood. For both temperatures, the isotherm of the mature wood is above the isotherm of the juvenile wood and this, in turn, is above the isotherm of the buried wood, primarily influenced by the higher cellulose and hemicellulose contents and lower extractives content in the mature wood, resulting in a higher number of accessible –OH groups. Degradation of the buried wood due to high temperatures explains why its isotherms are below the isotherms of the recent wood. The energy involved in the desorption process is greater than in adsorption. Similarly, more energy is involved in the mature wood than in the juvenile wood, and the energy involved in the juvenile wood is greater than in the buried wood.

Keywords

Equilibrium Moisture Content Crystallinity Index Isosteric Heat Juvenile Wood Mature Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study is part of the AGL2009-12801 project of the 2008–2011 Spanish National Plan for Scientific Research, Development and Technological Innovation, funded by the Spanish Ministry of Science and Innovation.

References

  1. Andersson S, Serimaa R, Paakkari T, Saranpaa P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537Google Scholar
  2. Andersson S, Wikberg H, Pesonen E, Maunu SL, Serimaa R (2004) Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees Struct Funct 18:346–353CrossRefGoogle Scholar
  3. Arevalo-Pinedo A, Giraldo-Zuñiga AD, Dos Santos FL, Arevalo ZDS, Arevalo RP (2004) Sorption isotherms experimental data and mathematical models for murici pulp (Byrsonima sericea). In: Proceedings of the 14th international drying symposium (IDS 2004), August 22–25, Sao Paulo, Brazil, vol A, pp 634–639Google Scholar
  4. Avramidis S (1997) The basics of sorption. In: International conference on wood-water relations, June 16–17, Copenhagen, Denmark, pp 1–16Google Scholar
  5. Avramidis S, Dubois J (1992) Sorption energies of some Canadian species. Holzforschung 46:177–179CrossRefGoogle Scholar
  6. Balakshin MY, Capanema EA, Goldfarb B, Frampton J, Kadla JF (2005) NMR studies on Fraser fir Abies fraseri (Pursh) Poir. lignins. Holzforschung 59:488–496CrossRefGoogle Scholar
  7. Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256CrossRefGoogle Scholar
  8. Blanchette RA (2000) A review of microbial deterioration found in archaeological wood from different environments. Int Biodeterior Biodegrad 46:189–204CrossRefGoogle Scholar
  9. Bratasz L, Kozlowska A, Kozlowski R (2012) Analysis of water adsorption by wood using the Guggenheim–Anderson–de Boer equation. Eur J Wood Prod 70:445–451CrossRefGoogle Scholar
  10. Chang HT, Chang ST (2002) Moisture excluding efficiency and dimensional stability of wood improved by acylation. Bioresour Technol 85:201–204CrossRefPubMedGoogle Scholar
  11. Choong ET, Achmadi SS (1991) Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci 23:185–196Google Scholar
  12. Christensen GN, Kelsey KE (1959) The rate of sorption of water vapor by wood. Holz Roh Werkst 17:178–188CrossRefGoogle Scholar
  13. Climent JM, Gil L, Pardos JA (1993) Heartwood and sapwood development and its relationship to growth and environment in Pinus canariensis Chr.Sm ex DC. J. For Ecol Manage 59:165–174CrossRefGoogle Scholar
  14. Climent JM, Gil L, Pardos JA (1998) Xylem anatomical traits related to resinous heartwood formation in Pinus canariensis Sm. Trees 12:139–145Google Scholar
  15. Climent JM, Chambel M, Pérez E, Gil L, Pardos JA (2002) Relationship between heartwood radius and early radial growth, tree age, and climate in Pinus canariensis. Can J For Res 32:103–111CrossRefGoogle Scholar
  16. Easty DB, Malcolm EW (1982) Estimation of pulping yield in continuous digesters from carbohydrate and lignin determinations. Tappi J 65:78–80Google Scholar
  17. Engelund ET, Thygesen LG, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood-water interactions. Wood Sci Technol 47:141–161CrossRefGoogle Scholar
  18. Esteban LG, Gasson P, Climent JM, de Palacios P, Guindeo A (2005) The wood of Pinus canariensis and its resinous heartwood. IAWA J 26:69–77CrossRefGoogle Scholar
  19. Esteban LG, Fernandez FG, Casasus AG, de Palacios PD, Gril J (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann For Sci 63:309–317CrossRefGoogle Scholar
  20. Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Cano NN (2008a) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci 40:111–121Google Scholar
  21. Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Conde M, Baonza V (2008b) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751CrossRefGoogle Scholar
  22. Esteban LG, de Palacios P, Garcia Fernandez F, Martin JA, Genova M, Fernandez-Golfin JI (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1170 ± 40 BP. Wood Sci Technol 43:140–151CrossRefGoogle Scholar
  23. Esteban LG, de Palacios P, Fernandez FG, Garcia-Amorena I (2010) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodegrad 64:371–377CrossRefGoogle Scholar
  24. Esteban LG, Simon C, Fernandez FG, de Palacios P, Martín-Sampedro R, Eugenio ME, Hosseinpourpia R (2015) Juvenile and mature wood of Abies pinsapo Boissier: sorption and thermodynamic properties. Wood Sci Technol 49:725–738CrossRefGoogle Scholar
  25. Fengel D (1991) Aging and fossilization of wood and its components. Wood Sci Technol 25:153–177Google Scholar
  26. Fengel D, Wegener G (1983) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  27. Fernandez FG, Esteban LG, de Palacios P, Simon C, Garcia-Iruela A, de la Fuente J (2014) Sorption and thermodynamic properties of Terminalia superba Engl. & Diels. and Triplochiton scleroxylon K. Schum. through the 15, 35 and 50°C sorption isotherms. Eur J Wood Prod 72:99–106CrossRefGoogle Scholar
  28. Freundt A (2003) Entrance of hot pyroclastic flows into the sea: experimental observations. Bull Volcanol 65:144–164Google Scholar
  29. Genova M, Santana C (2006) Crecimiento y longevidad en el pino canario (Pinus canariensis Smith.). Invest Agrar Sist Recur For 15:296–307CrossRefGoogle Scholar
  30. Gurioli L, Zanella E, Gioncada A, Sbrana A (2012) The historic magmatic-hydrothermal eruption of the Breccia di Commenda, Vulcano, Italy. Bull Volcanol 74:1235–1254CrossRefGoogle Scholar
  31. Hernandez RE (2007) Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39:132–145Google Scholar
  32. Hill C (2006) Wood modification. Chemical, thermal and other proccesses. Wiley, EnglandCrossRefGoogle Scholar
  33. Hill CAS, Jones D (1996) The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides. The effect of chain length. Holzforschung 50:457–462CrossRefGoogle Scholar
  34. Hill CAS, Jones D (1999) Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung 53:267–271CrossRefGoogle Scholar
  35. Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537CrossRefGoogle Scholar
  36. Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514CrossRefGoogle Scholar
  37. Huo D, Fang G, Yang Q, Han S, Deng Y, Shen K, Lin Y (2013) Enhancement of eucalypt chips’ enzymolysis efficiency by a combination method of alkali impregnation and refining pretreatment. Bioresour Technol 150:73–78CrossRefPubMedGoogle Scholar
  38. Iiyama K, Kasuya N, Lam TBT, Nakano J, Sakaguchi H (1988) Chemical characterization of ancient buried wood. Holzforschung 42:5–10CrossRefGoogle Scholar
  39. Illic J, Northway R, Pongracic S (2003) Juvenile wood characteristics, effects and identification. Literature review. Forest and Wood Products Research and Development CorporationGoogle Scholar
  40. Jahan MS, Mun SP (2005) Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis). Wood Sci Technol 39:367–373CrossRefGoogle Scholar
  41. Jannot Y, Kanmogne A, Talla A, Monkam L (2006) Experimental determination and modelling of water desorption isotherms of tropical woods: afzelia, ebony, iroko, moabi and obeche. Holz Roh Werkst 64:121–124CrossRefGoogle Scholar
  42. Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A (2006) Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol 40:709–720CrossRefGoogle Scholar
  43. Larson PR (1966) Changes in chemical composition of wood cell walls associated with age in Pinus resinosa. For Prod J 16:37–45Google Scholar
  44. Lenth CA, Kamke FA (2001) Equilibrium moisture content of wood in high-temperature pressurized environments. Wood Fiber Sci 33:104–118Google Scholar
  45. Li XJ, Cao ZY, Wei ZY, Feng QY, Wang JS (2011) Equilibrium moisture content and sorption isosteric heats of five wheat varieties in China. J Stored Prod Res 47:39–47CrossRefGoogle Scholar
  46. Lionetto F, Del Sole R, Cannoletta D, Vasapollo G, Maffezzoli A (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5:1910–1922CrossRefGoogle Scholar
  47. Majka J, Olek W (2008) Sorption properties of mature and juvenile lime wood (Tilia sp.). Folia For Pol Ser B 39:65–75Google Scholar
  48. Major JJ, Pierson TC, Hoblitt RP, Moreno H (2013) Pyroclastic density currents associated with the 2008-2009 eruption of Chaiten Volcano (Chile): forest disturbances, deposits, and dynamics. Andean Geol 40:324–358Google Scholar
  49. Mangas J, Pérez-Torrado JF, Gimeno D, Hansen A, Paterne M, Guillou H (2002) Caracterización de los materiales volcánicos asociados a las erupciones holocenas de la Caldera de Pinos de Galdar y edificios volcánicos adyacentes (Gran Canaria) (Characterisation of the volcanic materials associated with the Holocene eruptions of Caldera de Pinos, Gáldar, and adjacent volcanic edifices (Gran Canaria)) (In Spanish). Geogaceta 32:49–52Google Scholar
  50. McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Eng 60:157–165CrossRefGoogle Scholar
  51. Mihranyan A, Llagostera AP, Karmhag R, Stromme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442CrossRefPubMedGoogle Scholar
  52. Militz H, Busetto D, Hapla F (2003) Investigation on natural durability and sorption properties of Italian chestnut (Castanea sativa Mill.) from coppice stands. Holz Roh Werkst 61:133–141CrossRefGoogle Scholar
  53. Murata K, Watanabe Y, Nakano T (2013) Effect of thermal treatment on fracture properties and adsorption properties of Spruce wood. Materials 6:4186–4197CrossRefGoogle Scholar
  54. Neimsuwan T, Wang S, Taylor AM, Rials TG (2008) Statics and kinetics of water vapor sorption of small loblolly pine samples. Wood Sci Technol 42:493–506CrossRefGoogle Scholar
  55. Nogales J, Schmincke HU (1969) El Pino enterrado de la Cañada de las Arenas (Gran Canaria) (The buried pine of Cañada de las Arenas (Gran Canaria)) (In Spanish). Notebooks of Canary Islands Botany No. 5. Llano de la Piedra plant acclimatisation garden, Santa Lucia de TirajanaGoogle Scholar
  56. Olek W, Majka J, Czaijkowski L (2013) Sorption isotherms of thermally modified wood. Holzforschung 67:183–191CrossRefGoogle Scholar
  57. Peralta PN, Bangi AP, Lee AWC (1997) Thermodynamics of moisture sorption by the giant-timber bamboo. Holzforschung 51:177–182CrossRefGoogle Scholar
  58. Peura M, Saren MP, Laukkanen J, Nygard K, Andersson S, Saranpaa P, Paakkari T, Hamalainen K, Serimaa R (2008) The elemental composition, the microfibril angle distribution and the shape of the cell cross-section in Norway spruce xylem. Trees Struct Funct 22:499–510CrossRefGoogle Scholar
  59. Popescu CM, Hill CAS (2013) The water vapour adsorption-desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym Degrad Stabil 98:1804–1813CrossRefGoogle Scholar
  60. Rautkari L, Hill CAS, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J Mater Sci 48:6352–6356CrossRefGoogle Scholar
  61. Rautkari L, Honkanen J, Hill CAS, Ridley-Ellis D, Hughes M (2014) Mechanical and physical properties of thermally modified Scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180°C. Eur J Wood Prod 72:33–41CrossRefGoogle Scholar
  62. Rowell RM (1980) Distribution of reacted chemicals in southern pine modified with methyl isocyanate. Wood Sci 13:102–110Google Scholar
  63. Rowell RM (2005) Wood chemistry and wood composites. Taylor & Francis, FloridaGoogle Scholar
  64. Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blacksburg, VAGoogle Scholar
  65. Simon C, Esteban LG, de Palacios P, Fernandez FG, Martín-Sampedro R, Eugenio ME (2015) Thermodynamic analysis of water vapour sorption behaviour of juvenile and mature wood of Abies alba Mill. J Mater Sci 50:7282–7292CrossRefGoogle Scholar
  66. Singh AP (2012) A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J Cult Herit 13:S16–S20CrossRefGoogle Scholar
  67. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP) http://www.nrel.gov/biomass/pdfs/42619.pdf Accessed 27 Mar 2015
  68. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker S (2011) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP) http://www.nrel.gov/biomass/pdfs/42618.pdf Accessed 27 Mar 2015
  69. Song KL, Yin YF, Salmen L, Xiao FM, Jiang XM (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49:1734–1742CrossRefGoogle Scholar
  70. Stamm AJ, Hansen LA (1937) Minimizing wood shrinkage and swelling. Effect of heating in various gases. Ind Eng Chem 29:831–833CrossRefGoogle Scholar
  71. Telis VRN, Gabas AL, Menegalli FC, Telis-Romero J (2000) Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochim Acta 343:49–56CrossRefGoogle Scholar
  72. Themelin A, Rebollo J, Thibaut A (1997) Method for defining the behaviour of lignocellulosic produces at sorption: application to tropical wood species. In: International conference on wood-water relations. June 16–17, Copenhagen, Denmark, pp 17–32Google Scholar
  73. Tsoumis G (1991) Science and technology of wood. Kluwer Academic Publishers, New YorkGoogle Scholar
  74. Vaaler D, Syverud K, Seem B, Moe ST (2005) Estimating the pulping yield by carbohydrate analysis. Tappi J 4:23–27Google Scholar
  75. Viollaz PE, Rovedo CO (1999) Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. J Food Eng 40:287–292CrossRefGoogle Scholar
  76. Voight B, Davis MJ (2000) Emplacement temperatures of the November 22, 1994 nuee ardente deposits, Merapi Volcano, Java. J Volcanol Geotherm Res 100:371–377CrossRefGoogle Scholar
  77. Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1:253–277CrossRefGoogle Scholar
  78. Weichert L (1963) Investigations on sorption and swelling of spruce, beech and compressed beech wood between 20° and 100°. Holz Roh Werkst 21:290–300CrossRefGoogle Scholar
  79. Willems W, Mai C, Militz H (2013) Thermal wood modification chemistry analysed using van Krevelen’s representation. Int Wood Prod J 4:166–171CrossRefGoogle Scholar
  80. Yokoyama T, Kadla JF, Chang HM (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agric Food Chem 50:1040–1044CrossRefPubMedGoogle Scholar
  81. Zaihan J, Hill CAS, Hashim WS, Dahlan JM, Sun DY (2011) Analysis of the water vapour sorption isotherms of oil palm trunk and rubberwood. J Trop For Sci 23:97–105Google Scholar
  82. Zobel B, Matthias M, Roberds JH, Kellison RC (1968) Moisture content of southern pine trees. Technical Reports 37 School of Forest Resources NC State Univ Raleigh, NCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Cristina Simón
    • 1
  • Luis García Esteban
    • 1
  • Paloma de Palacios
    • 1
  • Francisco García Fernández
    • 1
  • Alberto García-Iruela
    • 1
  • Raquel Martín-Sampedro
    • 2
  • María E. Eugenio
    • 2
  1. 1.Departamento Sistemas y Recursos Naturales. Cátedra de Tecnología de la Madera. Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio NaturalUniversidad Politécnica de MadridMadridSpain
  2. 2.Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIAMadridSpain

Personalised recommendations