Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction

Abstract

Interactions between macromolecules in the cell walls of different plant origin were compared, namely spruce wood (Picea omorika (Pančić) Purkiňe) as an example of softwood, maple wood (Acer platanoides L.) as a hardwood and maize stems (Zea mays L.) as a herbaceous plant from the grass family and widely used agricultural plant. Interactions of macromolecules in isolated cell walls from the three species were compared by using Fourier transform infrared spectroscopy, X-ray diffraction and fluorescence spectroscopy. Linear dichroism of the cell walls was observed by using differential polarization laser scanning microscope (DP-LSM), which provides information of macromolecular order. This method has not previously been used for comparison of the cell walls of various plant origins. It was shown that the maize cell walls have higher amount of hydrogen bonds that lead to more regular packing of cellulose molecules, simpler structure of lignin, and a higher crystallinity of the cell wall in relation to the walls of woody plants. DP-LSM and fluorescence spectroscopy results indicate that maize has simpler and more ordered structure than both woody species. The results of this work provide new data for comparison of the cell wall properties that may be important for selection of appropriate plant for possible applications as a source of biomass. This may be a contribution to the development of efficient deconstruction and separation technologies that enable release of sugar and aromatic compounds from the cell wall macromolecular structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydr Polym 83(2):676–687

    CAS  Article  Google Scholar 

  2. Agarwal UP, Ralph SA (1997) FT-Raman Spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of Black Spruce (Picea mariana). Appl Spectrosc 51:1648–1655

    CAS  Article  Google Scholar 

  3. Akerholm M, Salmen L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969

    CAS  Article  Google Scholar 

  4. Akerholm M, Hinterstoisser B, Salmén L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 339:569–578

    CAS  Article  PubMed  Google Scholar 

  5. Albinsson B, Li S, Lundquist K, Stomberg R (1999) The origin of lignin fluorescence. J Mol Struct 508:19–27

    CAS  Article  Google Scholar 

  6. Anterola AM, Jeon JH, Davin LB, Lewis NG (2002) Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism. J Biol Chem 277:18272–18280

    CAS  Article  PubMed  Google Scholar 

  7. Atalla RH, Hackney JM, Uhlin I, Thompson NS (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int J Biol Macromol 15:109–112

    CAS  Article  PubMed  Google Scholar 

  8. Barakat A, Winter H, Rondeau-Mouro C, Saake B, Chabbert B, Cathala B (2007) Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta 226:267–281

    CAS  Article  PubMed  Google Scholar 

  9. Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    CAS  Article  PubMed  Google Scholar 

  10. Baskin T, Meekes H, Liang B, Sharp R (1999) Regulation of growth anisotropy in well-watered and water-stressed maize roots. II. Role of cortical microtubules and cellulose microfibrils. Plant Physiol 119:681–692

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Burlat V, Joseleau J, Ruel K (2000) Topochemistry and microdiversity of lignin in plant cell walls. In: Kim YS (ed) New horizons Wood Anat. Chonnam National University Press, Kwangju, pp 181–188

    Google Scholar 

  12. Chen M, Sommer A, McClure JW (2000) Fourier transform—IR determination of protein contamination in thioglycolic acid lignin from radish seedlings and improved methods for extractive-free cell wall preparation. Phytochem Anal 11:153–159

    CAS  Article  Google Scholar 

  13. Christensen U, Alonso-Simon A, Scheller HV, Willats WG, Harholt J (2010) Characterization of the primary cell walls of seedlings of Brachypodium distachyon—a potential model plant for temperate grasses. Phytochemistry 71:62–69

    CAS  Article  PubMed  Google Scholar 

  14. Ciolacu D (2007) On the supramolecular structure of cellulose allomorphs after enzymatic degradation. J Optoelectron Adv Mater 9(4):1033–1037

    CAS  Google Scholar 

  15. Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose- structure and characterization. Cellul Chem Technol 45:13–21

    CAS  Google Scholar 

  16. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    CAS  Article  PubMed  Google Scholar 

  17. Dammström S, Salmén L, Gatenholm P (2009) On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. BioResources 4:3–14

    Google Scholar 

  18. Djikanović D, Simonović J, Savić A, Ristić I, Bajuk-Bogdanović D, Kalauzi A, Cakić S, Budinski-Simendić J, Jeremić M, Radotić K (2012a) Structural differences between lignin model polymers synthesized from various monomers. J Polym Environ 20:607–617

    Article  Google Scholar 

  19. Djikanović D, Kalauzi A, Jeremić M, Xu J, Mići M, Whyte JD, Leblanc RM, Radotić K (2012b) Interaction of the CdSe quantum dots with plant cell walls. Colloids Surf B 91:41–47

    Article  Google Scholar 

  20. Donaldson L, Radotić K, Kalauzi A, Djikanović D, Jeremić M (2010) Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. J Struct Biol 169:106–115

    Article  PubMed  Google Scholar 

  21. Faix O (1992) Fourier transform infrared spectroscopy. In: Lin S, Dence C (eds) Methods lignin chem. Springer, New York, pp 83–109

    Chapter  Google Scholar 

  22. Faix O, Bremer J, Schmidt O, Stevanovic T (1991) Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spectroscopy. J Anal Appl Pyrolysis 21:147–162

    CAS  Article  Google Scholar 

  23. Fan M, Dai D, Huang B (2012) Transform Infrared Spectroscopy for natural fibres. In: Salih SM (ed) Fourier transform—materials analysis. InTech, Shanghai, pp 45–68. www.intechopen.com

  24. Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforsch Int J Biol Chem Phys Technol Wood 47:103–108

    CAS  Google Scholar 

  25. Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    CAS  Article  Google Scholar 

  26. Garab G, Galajda P, Pomozi I, Finzi L, Praznovszky T, Ormos P, van Amerongen H (2005) Alignment of biological microparticles by a polarized laser beam. Eur Biophys J 34:335–343

    Article  PubMed  Google Scholar 

  27. Georget DM, Cairns P, Smith C, Waldron KW (1999) Crystallinity of lyophilised carrot cell wall components. Int J Biol Macromol 26:325–331

    CAS  Article  PubMed  Google Scholar 

  28. Ghaffar SH, Fan MZ (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101

    CAS  Article  Google Scholar 

  29. Ha MA, MacKinnon IM, Sturkova A, Apperley DC, McCann MC, Turner SR, Jarvis MC (2002) Structure of cellulose-deficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana. Phytochemistry 61:7–14

    CAS  Article  PubMed  Google Scholar 

  30. Haygreen JG, Bowyer JL (1996) Forest products and wood science, 3rd edn. Iowa State University Press, Ames

  31. Haymes KM, Ibrahim I, Mischke S, Scott DL, Saunders JA (2004) Rapid isolation of DNA from chocolate and date palm tree crops. J Agric Food Chem 52:5456–5462

    CAS  Article  PubMed  Google Scholar 

  32. Hermans PH, Weidinger A (1948) Quantitative X-Ray investigations on the crystallinity of cellulose fibers. A background analysis. J Appl Phys 19:491–506

    CAS  Article  Google Scholar 

  33. Houtman C, Atalla R (1995) Cellulose–lignin interactions a computational study. Plant Physiol 107:977–984

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hulleman HD, Van Hazendonk JM, Van Dam JEG (1994) Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopy. Carbohydr Res 261:163–172

    CAS  Article  Google Scholar 

  35. Kacuráková M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Article  Google Scholar 

  36. Kalauzi A, Mutavdzić D, Djikanović D, Radotić K, Jeremić M (2007) Application of asymmetric model in analysis of fluorescence spectra of biologically important molecules. J Fluoresc 17:319–329

    CAS  Article  PubMed  Google Scholar 

  37. Kerstens S, Verbelen JP (2003) Cellulose orientation at the surface of the Arabidopsis seedling. Implications for the biomechanics in plant development. J Struct Biol 144:262–270

    CAS  Article  PubMed  Google Scholar 

  38. Kondo T (2004) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides: Structural diversity and functional versatility, ISBN 3-540-37102-8, New York, USA

  39. Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39:269–278

    CAS  Article  Google Scholar 

  40. Lv G, Wu S, Lou R (2010) Kinetic study of the thermal decomposition of hemicellulose isolated from corn stalk. BioResources 5:1281–1291

    CAS  Google Scholar 

  41. Marchessault RH (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5:107–129

    CAS  Article  Google Scholar 

  42. Marchessault RH, Sundararajan PR (1983) Cellulose. In: Aspinal G 0. (ed) polysaccharides, vol. 2. Academic Press Inc., New York, pp 12–95

  43. Micic M, Jeremic M, Radotic K, Mavers M, Leblanc RM (2000) Visualization of artificial lignin supramolecular structures. Scanning 22:288–294

    CAS  Article  PubMed  Google Scholar 

  44. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    CAS  Article  Google Scholar 

  45. Newman RH (1992) Nuclear magnetic resonance study of spatial relationships between chemical components in wood cell walls. Holzforsch Int J Biol Chem Phys Technol Wood 46:205

    CAS  Google Scholar 

  46. O’Connor RT, DuPré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons. Text Res J 28:382–392

    Article  Google Scholar 

  47. Olmstead JA, Gray DG (1993) Fluorescence emission from mechanical pulp sheets. J Photochem Photobiol A Chem 73:59–65

    CAS  Article  Google Scholar 

  48. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    CAS  Article  PubMed  Google Scholar 

  49. Pérez S, Mazeau K (2005) Conformation, Structures, and Morphologies of Celluloses. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. CRC, New York, pp 41–68

  50. Popescu MC, Popescu CM, Singurel G, Vasile C, Argyropoulos D, Willför S (2007) Spectral characterization of eucalyptus wood. Appl Spectrosc 61:1168–1177

    CAS  Article  PubMed  Google Scholar 

  51. Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos D, Willför S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77:851–857

    CAS  Article  Google Scholar 

  52. Popescu MC, Popescu CM, Lisa G, Sakata Y (2011) Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988:65–72

    CAS  Article  Google Scholar 

  53. Pretsch E, Clerc T, Seibl J, Simon W (1981) Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden (Tables for structure determination of organic compounds by spectroscopic methods) (in German). Springer, Berlin

    Book  Google Scholar 

  54. Radotić K, Kalauzi A, Djikanović D, Jeremić M, Leblanc RM, Cerović ZG (2006) Component analysis of the fluorescence spectra of a lignin model compound. J Photochem Photobiol B Biol 83:1–10

    Article  Google Scholar 

  55. Ragauskas A (2015) Crystallinity index of untreated and pretreated biomass cellulose from pretreatment technologies. Georgia Institute of Technology. http://ipst.gatech.edu/faculty/ragauskas_art/technical_reviews/CrI.pdf. Accessed 2 Mar 2015

  56. Ragauskas AJ, Williams CK, Davison BH et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    CAS  Article  PubMed  Google Scholar 

  57. Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2000) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC, Boca Raton, pp 35–74

    Google Scholar 

  58. Ruel K, Joseleau J (2005) Deposition of hemicelluloses and lignins during secondary wood cell wall assembly. In: Entwistle KM, Walker JCF (eds) The hemicelluloses workshop 2005. University of Canterbury, Christchurch, pp 103–113

    Google Scholar 

  59. Ruel K, Barnoud F, Goring DAI (1978) Lamellation in the S2 layer of softwood tracheids as demonstrated by scanning transmission electron microscopy. Wood Sci Technol 12:287–291

    Article  Google Scholar 

  60. Ruel K, Barnoud F, Goring D (1979) Ultrastructural lamellation in the S2 layer of two hardwoods and a reed. Cellul Chem Technol 13:429–432

    CAS  Google Scholar 

  61. Sarkanen KV, Ludwig CH (1971) Lignin: occurrence, formation, structure and reactions. Wiley/Interscience, New York

    Google Scholar 

  62. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    CAS  Article  PubMed  Google Scholar 

  63. Steinbach G, Pomozi I, Zsiros O, Páy A, Horváth GV, Garab G (2008) Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscope. Cytom Part A J Int Soc Anal Cytol 73:202–208

    Article  Google Scholar 

  64. Steinbach G, Pomozi I, Zsiros O, Menczel L, Garab G (2009) Imaging anisotropy using differential polarization laser scanning confocal microscopy. Acta Histochem 111:316–325

    Article  PubMed  Google Scholar 

  65. Steinbach G, Pomozi I, Jánosa DP, Makovitzky J, Garab G (2011) Confocal fluorescence detected linear dichroism imaging of isolated human amyloid fibrils. Role Supercoiling J Fluoresc 21:983–989

    CAS  Article  PubMed  Google Scholar 

  66. Strack D, Heilemann J, Mömken M, Wray V (1988) Cell wall conjugated phenolics from coniferous leaves. Phytochemistry 27:3517–3521

    CAS  Article  Google Scholar 

  67. Sun SN, Li MF, Yuan TQ, Xu F, Sun RC (2012) Sequential extractions and structural characterization of lignin with ethanol and alkali from bamboo (Neosinocalamus affinis). Ind Crops Prod 37:51–60

    Article  Google Scholar 

  68. Verbelen J, Kerstens S (2000) Polarization confocal microscopy and Congo Red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. J Microsc 198:101–107

    CAS  Article  PubMed  Google Scholar 

  69. Wang Y (2008) Cellulose fiber dissolution in sodium hydroxide solution at low temperature: dissolution kinetics and solubility improvement. Thesis. Georgia Institute of Technology, USA

  70. Yuan L, Wan J, Ma Y, Wang Y, Huang M, Chen Y (2013) The content of different hydrogen bond models and crystal structure of eucalyptus fibers during beating. BioResources 8:717–734

    Google Scholar 

  71. Zhao X, Yang X, Shi Y, Chen G, Li X (2013) Protein and lipid characterization of wheat roots plasma membrane damaged by Fe and H2O2 using ATR-FTIR method. J Biophys Chem 4(1):8–35

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants 173017 and III45012 from the Ministry of Education, Science and Technology of the Republic of Serbia. The work was also supported by the bilateral project “Structural anisotropy of plant cell walls of various origin and their constituent polymers, using differential polarized laser scanning microscopy (DP-LSM)” between the Republic of Serbia and the Republic of Hungary. Institutions: IMSI, University of Belgrade, Serbia, and Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Hungary.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Djikanović.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Djikanović, D., Devečerski, A., Steinbach, G. et al. Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction. Wood Sci Technol 50, 547–566 (2016). https://doi.org/10.1007/s00226-015-0792-y

Download citation

Keywords

  • Cell Wall
  • Lignin
  • Hemicellulose
  • Plant Cell Wall
  • Cellulose Microfibril