Skip to main content
Log in

Mode of action of brown rot decay resistance of acetylated wood: resistance to Fenton’s reagent

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Acetylation is known to enhance the resistance of wood to brown rot fungi. As initial decay by some brown rot fungi is assumed to be caused by the Fenton reaction, pine micro-veneers acetylated to various weight percent gains (WPG) were exposed in a solution containing iron ions and hydrogen peroxide, i.e., Fenton’s reagent. Mass loss and tensile strength loss as well as the decomposition of hydrogen peroxide within the incubation time decreased with increasing WPG of the veneers. Incubation of untreated and acetylated veneers in acetate buffer containing ferric ions without H2O2 revealed that the modification strongly reduced the uptake of Fe ions by the wood cell wall. FT-IR analysis indicated oxidation of the unmodified control veneers but did not show predominant decay of specific cell wall components. Spectra of acetylated veneers did not reveal any significant changes induced by Fenton’s reagent. It was concluded that one possible reason for the enhanced resistance of acetylated wood to the Fenton reaction could be the reduced or almost completely prevented uptake of Fe ions by the wood cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ander P, Stoytschev I, Eriksson KE (1988) Cleavage and metabolism of methoxyl groups from vanillic and ferulic by brown-rot and soft-rot fungi. Cell Chem Technol 22:255–266

    CAS  Google Scholar 

  • Arantes V, Goodell B (2014) Current understanding of brown-rot fungal biodegradation mechanisms: a review. In: Deterioration and Protection of Sustainable Biomaterials, vol 1158. ACS Symposium Series, vol 1158. American Chemical Society, pp 3–21

  • Arantes V, Qian YH, Milagres AMF, Jellison J, Goodell B (2009) Effect of pH and oxalic acid on the reduction of Fe3+ by a biomimetic chelator and on Fe3+ desorption/adsorption onto wood: implications for brown-rot decay. Int Biodeterior Biodegrad 63:478–483

    Article  CAS  Google Scholar 

  • Arantes V, Milagres AMF, Filley TR, Goodell B (2011) Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol 38:541–555

    Article  CAS  PubMed  Google Scholar 

  • Cowling EB, Brown W (1969) Structural features of cellulosic materials in relation to enzymatic hydrolysis. Adv Chem Ser 95:152–187

    Article  CAS  Google Scholar 

  • Crestini C, Caponi MC, Argyropoulos DS, Saladino R (2006) Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. Bioorg Med Chem 15:5292–5302

    Article  Google Scholar 

  • Crestini C, Crucianelli M, Orlandi M, Saladino R (2010) Oxidative strategies in lignin chemistry: a new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catal Today 156:8–22

    Article  CAS  Google Scholar 

  • Enoki A, Tanaka H, Fuse G (1988) Degradation of lignin-related compounds, pure cellulose, and wood components by white-rot and brown-rot fungi. Holzforschung 42:85–93

    Article  CAS  Google Scholar 

  • Evans PD, Banks WB (1988) Degradation of wood surfaces by water. Changes in mechanical properties of thin wood strips. Holz Roh Werkst 46:427–435

    Article  CAS  Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–27

    Article  CAS  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  • Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124

    Article  CAS  Google Scholar 

  • Flournoy DS, Kirk TK, Highley TL (1991) Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45:383–388

    Article  CAS  Google Scholar 

  • Goodell B, Daniel G, Jellison J, Nilsson T (1988) Immunolocalization of extracellular metabolites from Poria placenta. The International Work Group on Wood Preservation. Working Group IRG WP 1361

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162

    Article  CAS  Google Scholar 

  • Green F (2000) Inhibition of decay fungi using cotton cellulose hydrolysis as a model for wood decay. Int Biodeterior Biodegrad 46:77–82

    Article  CAS  Google Scholar 

  • Green F, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeterior Biodegrad 39:113–124

    Article  CAS  Google Scholar 

  • Highley TL (1977) Requirements for cellulose degradation by a brown-rot fungus. Mater Org 12:25–36

    Google Scholar 

  • Highley TL (1987) Changes in chemical components of hardwood and softwood by brown-rot fungi. Mater Org 22:39–45

    CAS  Google Scholar 

  • Highley TL, Murmanis LL, Palmer JG (1983) Electron microscopy of cellulose decomposition by brown-rot fungi. Holzforschung 37:271–278

    Article  CAS  Google Scholar 

  • Hill CAS (2006) Wood modification—chemical, thermal and other processes., Wiley Series in Renewable Resources, John Wiley & Sons, Ldt, Hoboken

    Book  Google Scholar 

  • Hill CAS (2009) Why does acetylation protect wood from microbiological attack? Wood Mater Sci Eng 4:37–45

    Article  CAS  Google Scholar 

  • Hill CAS, Jones D (1996) The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides. Holzforschung 50:457–462

    Article  CAS  Google Scholar 

  • Hill CAS, Jones D (1999) Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung 53:267–271

    Article  CAS  Google Scholar 

  • Hill CAS, Khalil HPSA, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crop Prod 8:53–63

    Article  CAS  Google Scholar 

  • Hill CAS, Forster SC, Farahani MRM, Hale MDC, Ormondroyd GA, Williams GR (2005) An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. Int Biodeterior Biodegrad 55:69–76

    Article  CAS  Google Scholar 

  • Hill CAS, Hale MD, Ormondroyd GA, Kwon JH, Forster SC (2006) Decay resistance of anhydride-modified Corsican pine sapwood exposed to the brown rot fungus Coniophora puteana. Holzforschung 60:625–629

    Article  CAS  Google Scholar 

  • Hosseinpourpia R, Mai C (2015) Degradation of wood polymer modified by low molecular weight phenol formaldehyde resin with Fenton’s reagent. Holzforschung. doi:10.1515/hf-2015-0045

    Google Scholar 

  • Hosseinpourpia R, Adamopoulos S, Mai C (2015) Tensile strength of handsheets from recovered fibers treated with N-methylol melamine and 1,3-dimethylol-4,5-dihydroxyethyleneurea. J Appl Polym Sci. doi:10.1002/App.41290

    Google Scholar 

  • Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143:259–266

    Article  CAS  Google Scholar 

  • Ibach R, Rowell RM (2000) Improvements in decay resistance based on moisture exclusion. Mol Cryst Liq Cryst 353:22–33

    Article  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446:49–54

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK (1975) Effects of a brown-rot fungus, Lenzites frabea, on lignin in spruce wood. Holzforschung 29:99–107

    Article  CAS  Google Scholar 

  • Kirk TK, Highley TL (1973) Quantitative changes in structural components of conifer woods during decay by white-rot and brown-rot fungi. Phytopathology 63:1338–1342

    Article  CAS  Google Scholar 

  • Kleman-Leyer KM, Agosin KE, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58:1266–1270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kleman-Leyer KM, Neil NR, Miller RC, Kirk TK (1994) Changes in the molecular-size distribution of insoluble cellulose by the action of recombinant Cellulomonas fimi cellulases. Biochem J 302:462–469

    Article  Google Scholar 

  • Klüppel A, Mai C (2012) Effect of lignin and hemicelluloses on the tensile strength of micro-veneers determined at finite span and zero span. Holzforschung 66:493–496

    Article  Google Scholar 

  • Koenigs JW (1972) Production of extracellular H2O2 and peroxidase by brown rot fungi. Phytopathology 62:100–110

    Article  CAS  Google Scholar 

  • Koenigs JW (1974) Fungal production of hydrogen peroxide in wood. Arch Microbiol 99:129–145

    Article  CAS  Google Scholar 

  • Koppenol WH, Liebman JF (1984) The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion. J Phys Chem 88:99–101

    Article  CAS  Google Scholar 

  • Kuo M, Stocke DD, Mcnabb HS (1988) Microscopy of progressive decay of cotton wood by the brown-rot fungus G. trabeum. Wood Fiber Sci 20:405–413

    Google Scholar 

  • Law KN, Garceau JJ, Koran Z (1977) Measurement of intra-increment tensile-strength by using a zero-span technique. Wood Sci 10:42–48

    Google Scholar 

  • Liese W (1970) Ultrastructural aspects of woody tissue disintegration. Ann Rev Phytopathol 8:231–258

    Article  Google Scholar 

  • Mai C, Majcherczyk A, Schormann W, Hüttermann A (2002) Degradation of acrylic copolymers by Fenton’s reagent. Polym Degrad Stab 75:107–112

    Article  CAS  Google Scholar 

  • Martínez AT, Rencoret J, Nieto L, Jimenez-Barbero J, Gutierrez A, del Rio JC (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol 13:96–107

    Article  PubMed  Google Scholar 

  • Mohebby B (2008) Application of ATR infrared spectroscopy in wood acetylation. J Agric Sci Technol 10:253–259

    Google Scholar 

  • Papadopoulos AN, Hill CAS (2002) The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against Coniophora puteana. Holz Roh Werkst 60:329–332

    Article  CAS  Google Scholar 

  • Papadopoulos AN, Hill CAS (2003) The sorption of water vapour by anhydride modified softwood. Wood Sci Technol 37:221–231

    Article  CAS  Google Scholar 

  • Pries M, Wagner R, Kaesler KH, Militz H, Mai C (2013) Acetylation of wood in combination with polysiloxanes to improve water-related and mechanical properties of wood. Wood Sci Technol 47:685–699

    Article  CAS  Google Scholar 

  • Qian Y, Goodell B, Felix C (2002) The effect of low molecular weight chelators on iron chelation and free radical generation as studied by ESR measurement. Chemosphere 48:21–28

    Article  CAS  PubMed  Google Scholar 

  • Ringman R, Pilgård A, Brischke C, Richter K (2013) Mode of action of brown rot decay resistance in modified wood: a review. Holzforschung 68:143–255

    Google Scholar 

  • Rowell RM (2004) Acetylation of natural fibers to improve performance. Mol Cryst Liq Cryst 418:881–892

    Article  Google Scholar 

  • Rowell RM, Banks WB (1987) Tensile-strength and toughness of acetylated pine and lime flakes. Br Polym J 19:479–482

    Article  CAS  Google Scholar 

  • Tarkow H, Stamm AJ, Erickson ECO (1946) Acetylated wood. Report, Forest Products Laboratory, USDA Forest Service 1593

  • Tarkow H, Feist WC, Southerland CF (1966) Interaction of wood with polymeric materials. Penetration versus molecular size. For Prod J 16:61–65

    CAS  Google Scholar 

  • Thybring EE (2013) The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. Int Biodeterior Biodegrad 82:87–95

    Article  Google Scholar 

  • Verma P, Dyckmans J, Militz H, Mai C (2008) Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity. Appl Microbiol Biotechnol 80:125–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilcox WW (1978) Review of literature on the effects of early stages of decay on wood strength. Wood Fiber 9:252–257

    Google Scholar 

  • Winandy JE, Rowell RM (1984) The chemistry of wood strength. In Rowell RM (ed) The chemistry of solid wood. ACS Sym Series 208, Washington DC, pp 211–255

  • Xiao Z, Xie Y, Mai C (2012) The fungal resistance of wood modified with glutaraldehyde. Holzforschung 66:237–243

    CAS  Google Scholar 

  • Xie Y, Xiao Z, Goodell B, Jellison J, Militz H, Mai C (2010) Degradation of wood veneers by Fenton’s reagents: effects of wood constituents and low molecular weight phenolic compounds on hydrogen peroxide decomposition and wood tensile strength loss. Holzforschung 64:375–383

    Article  CAS  Google Scholar 

  • Xie Y, Xiao Z, Mai C (2015) Degradation of chemically modified Scots pine (Pinus sylvestris L.) with Fenton reagent. Holzforschung 69:153–161

    Article  CAS  Google Scholar 

  • Xu G, Goodell B (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol 87:43–57

    Article  CAS  PubMed  Google Scholar 

  • Yelle DJ, Ralph J, Lu FC, Hammel KE (2008) Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol 10:1844–1849

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Academic Exchange Service (DAAD) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Mai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinpourpia, R., Mai, C. Mode of action of brown rot decay resistance of acetylated wood: resistance to Fenton’s reagent. Wood Sci Technol 50, 413–426 (2016). https://doi.org/10.1007/s00226-015-0790-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0790-0

Keywords

Navigation