Skip to main content
Log in

Distribution of the equilibrium moisture content in four hardwoods below fiber saturation point with magnetic resonance microimaging

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The distribution of liquid and bound water in wood samples under equilibrium moisture contents (EMC) below fiber saturation point (FSP) was assessed by magnetic resonance (MR) microimaging. Two Amazonian hardwoods, huayruro (Robinia coccinea) and cachimbo [Cariniana domesticata], a plantation grown eucalyptus (Eucalyptus saligna), and a temperate species red oak (Quercus rubra) were studied. Desorption tests were performed at 21 °C from full saturation state for huayruro, cachimbo, and red oak, and from green condition for eucalyptus. The EMC was reached under three desorption conditions [58, 76, and 90 % relative humidity (RH)]. MR microimages were obtained based on T 2 times and on 1H concentration. Scanning electron microscopy images helped us to interpret MR microimages. The results showed that wood structure plays a major role in liquid water drainage and in water diffusion. Eucalyptus saligna and red oak showed liquid water entrapped in parenchyma tissues, even below FSP (90 % RH). At this same RH level, all liquid water was, however, drained for cachimbo and huayruro. For these woods, bound water was not uniformly distributed in wood structure, concentrating it more in fibers for both species. Huayruro showed the highest heterogeneity in hygroscopicity, which is explained by its particular wood anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida G (2006) Influence de la structure du bois sur ses propriétés physico-mécaniques à des teneurs en humidité élevées. (Influence of the wood structure on its physical and mechanical properties at high relative humidities). Ph.D. thesis, Université Laval, Québec, Canada (in French)

  • Almeida G, Hernández RE (2006a) Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Sci Technol 40:599–613

    Article  CAS  Google Scholar 

  • Almeida G, Hernández RE (2006b) Changes in physical properties of yellow birch below and above the fiber saturation point. Wood Fiber Sci 38:74–83

    CAS  Google Scholar 

  • Almeida G, Hernández RE (2007) Dimensional changes of beech wood resulting from three different re-wetting treatments. Holz als Roh-und Werkstoff 65:193–196

    Article  Google Scholar 

  • Almeida G, Gagné S, Hernández RE (2007) A NMR study of water distribution in hardwoods at several equilibrium moisture contents. Wood Sci Technol 41:293–307

    Article  CAS  Google Scholar 

  • Almeida G, Leclerc S, Perré P (2008) NMR imaging of fluid pathways during drainage of softwood in a pressure membrane chamber. Int J Multiph Flow 34:312–321

    Article  CAS  Google Scholar 

  • Alzate SBA (2004) Caracterização da madeira de árvores de clones de Eucalyptus grandis, E. saligna e E. grandis x urophylla. (Wood characterization of Eucalyptus grandis, E. saligna, and E. grandis x urophylla clones). Ph.D. thesis, Universidade de São Paulo, Piracicaba, Brazil (in Portuguese)

  • Araujo CD, MacKay AL, Hailey JRT, Whittall KP, Le H (1992) Proton magnetic resonance techniques for characterization of water in wood: application to white spruce. Wood Sci Technol 26:101–113

    Article  CAS  Google Scholar 

  • Araujo CD, MacKay AL, Whittall KP, Hailey JRT (1993) A diffusion model for spin–spin relaxation of compartmentalized water in wood. J Magn Reson B 101:248–261

    Article  CAS  Google Scholar 

  • Babiak M, Kúdela J (1995) A contribution to the definition of the fiber saturation point. Wood Sci Technol 29:217–226

    CAS  Google Scholar 

  • Barkas WW (1935) Fibre saturation point of wood. Nature 135:545

    Article  Google Scholar 

  • Brownstein KR (1980) Diffusion as an explanation of observed NMR behavior of water absorbed on wood. J Magn Reson 40:505–510

    CAS  Google Scholar 

  • Brownstein KR, Tarr CE (1979) Importance of classical diffusion in NMR studies of water in biological cells. Phys Rev A 19:2446–2453

    Article  Google Scholar 

  • Bucur V (2003) Techniques for high resolution imaging of wood structure: a review. Meas Sci Technol 14:R91–R98

    Article  CAS  Google Scholar 

  • Côté WA (1963) Structural factors affecting the permeability of wood. J Polym Sci C 2:231–242

    Article  Google Scholar 

  • Dvinskikh SV, Henriksson M, Berglund LA, Furo I (2011) A multinuclear magnetic resonance imaging (MRI) study of wood with adsorbed water: estimating bound water concentration and local wood density. Holzforschung 65:103–107

    Article  CAS  Google Scholar 

  • Goulet M, Hernández RE (1991) Influence of moisture sorption on the strength of sugar maple wood in tangential tension. Wood Fiber Sci 23:197–206

    Google Scholar 

  • Hameury S, Sterley M (2006) Magnetic resonance imaging of moisture distribution in Pinus sylvestris L. exposed to daily indoor relative humidity fluctuations. Wood Mater Sci Eng 1:116–126

    Article  Google Scholar 

  • Hart CA (1984) Relative humidity, EMC, and collapse shrinkage in wood. For Prod J 34(11/12):45–54

    CAS  Google Scholar 

  • Hart CA, Przestrzelski PJ, Wheeler FJ (1974) Entrapped lumen water in hickory during desorption. Wood Sci 6:356–362

    Google Scholar 

  • Hernández RE (2007a) Effects of extraneous substances, wood density and interlocked grain on fiber saturation point of hardwoods. Wood Mater Sci Eng 2:45–53

    Article  Google Scholar 

  • Hernández RE (2007b) Moisture sorption properties of hardwoods as affected by extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39:132–145

    Google Scholar 

  • Hernández RE, Bizoň M (1994) Changes in shrinkage and tangential compression strength of sugar maple below and above the fiber saturation point. Wood Fiber Sci 26:360–369

    Google Scholar 

  • Hernández RE, Cáceres CB (2010) Magnetic resonance microimaging of liquid water distribution in sugar maple wood below fiber saturation point. Wood Fiber Sci 42:259–272

    Google Scholar 

  • Hernández RE, Pontin M (2006) Shrinkage of three tropical hardwoods below and above the fiber saturation point. Wood Fiber Sci 38:474–483

    Google Scholar 

  • Hoffmeyer P, Engelund ET, Thygesen LG (2011) Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions. Holzforschung 65:875–882

    Article  CAS  Google Scholar 

  • Hsi E, Hossfeld R, Bryant RG (1977) Nuclear magnetic resonance relaxation study of water absorbed on milled Northern white cedar. J Colloid Interface Sci 62:389–395

    Article  CAS  Google Scholar 

  • IAWA Committee (1989) IAWA list of microscopic features for heartwood identification. Int Assoc Wood Anat Bull 10:219–332

    Google Scholar 

  • Jankowsky IP, Santos GRV (2005) Drying behaviour and permeability of Eucalyptus grandis lumber. Maderas. Ciencia y tecnología 7(1):17–21

    Article  Google Scholar 

  • Jankowsky IP, Santos GRV, Andrade A (2008) Secagem da madeira serrada de eucalipto (Drying behavior of eucalyptus lumber). Revista da Madeira 19:64–72 (In Portuguese)

    Google Scholar 

  • Jansen S, Pletsers A, Rabaey D, Lens F (2008) Vestured pits: a diagnostic character in the secondary xylem of myrtales. J Trop For Sci 20:328–339

    Google Scholar 

  • Kastler B (2011) Comprendre l’IRM: Manuel d’autoapprentissage (Understanding MRI: self-study manual), Masson, Paris, 2011 (in French)

  • Meder R, Codd SL, Franich RA, Callaghan PT, Pope JM (2003) Observation of anisotropic water movement in Pinus radiata D. Don sapwood above fiber saturation using magnetic resonance micro-imaging. Holz als Roh-und Werkstoff 61:251–256

    Article  Google Scholar 

  • Menon RS, MacKay AL, Hailey JRT, Bloom M, Burgess AE, Swanson JS (1987) An NMR determination of the physiological water distribution in wood during drying. J Appl Polym Sci 33:1141–1155

    Article  CAS  Google Scholar 

  • Naderi N, Hernández RE (1997) Effect of a re-wetting treatment on the dimensional changes of sugar maple wood. Wood Fiber Sci 29:340–344

    CAS  Google Scholar 

  • Navi P, Heger F (2005) Comportement thermo-hydromécanique du bois (Thermo-hydro-mechanical behavior of wood), Presses Polytechniques et Universitaires Romandes, Switzerland (in French)

  • Nzokou P, Kamdem DP (2004) Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa). Wood Fiber Sci 36:483–492

    CAS  Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology. Michigan State University, New York

    Google Scholar 

  • Passarini L, Malveau C, Hernández RE (2014) Water state study of wood structure of four hardwoods below fiber saturation point with NMR technique. Wood Fiber Sci 46:480–488

    CAS  Google Scholar 

  • Quick JJ, Hailey JRT, Mackay AL (1990) Radial moisture profiles of cedar sapwood during drying—a proton magnetic-resonance study. Wood Fiber Sci 22:404–412

    Google Scholar 

  • Ross RJ, Brashaw BK, Pellerin RF (1998) Nondestructive evaluation of wood. Forest Prod J 48:14–19

    Google Scholar 

  • Scurfield G, Silva SR (1970) The vestured pits of Eucalyptus regnans F.Muell.: a study using scanning electron microscopy. Bot J Linn Soc 63:313–320

    Article  Google Scholar 

  • Shmulsky R, Jones P (2011) Forest products and wood science, an introduction. Blackwell, Ames

    Book  Google Scholar 

  • Siau JF (1984) Transport processes in wood. Springer, Berlin

    Book  Google Scholar 

  • Siau JF (1995) Wood: influence of moisture on physical properties. Virginia Tech, Blacksburg

    Google Scholar 

  • Singh AP (1983) On the occurrence of anomalous tubular structures in the vestured pits of petiolar xylem in Eucalyptus delegatensis. IAWA Bull 4:239–243

    Article  Google Scholar 

  • Skaar C (1988) Wood–water relations. Springer, Berlin

    Book  Google Scholar 

  • Stamm AJ (1964) Wood and cellulose science. Ronald Press, New York

    Google Scholar 

  • Stamm AJ (1971) Review of nine methods for determining the fiber saturation point of wood and wood products. Wood Sci 4:114–128

    Google Scholar 

  • Stone JE, Scallan AM (1967) The effect of component removal upon the porous structure of the cell wall of wood II. Swelling in water and the fiber saturation point. Tappi 50:496–501

    CAS  Google Scholar 

  • Telkki V-V (2012) Wood characterization by NMR & MRI of fluids. eMagRes 1:215–222

    CAS  Google Scholar 

  • Thygesen LG, Elder T (2008) Moisture in untreated, acetylated, and furfurylated Norway spruce studied during drying using time domain NMR. Wood Fiber Sci 40:309–320

    CAS  Google Scholar 

  • Tiemann HD (1906) Effect of moisture upon the strength and stiffness of wood. USDA For Serv, Bull 70, Government Printing Office, Washington, DC

  • Vermaas HF (1995) Drying eucalyptus for quality: material characteristics, pre-drying treatments, drying methods, schedules and optimisation of drying quality, South African. For J 174:41–49

    Google Scholar 

  • Watanabe Y, Sano Y, Asada T, Funada R (2006) Histochemical study of the chemical composition of vestured pits in two species of Eucalyptus. IAWA J 27:33–43

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger E. Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passarini, L., Malveau, C. & Hernández, R.E. Distribution of the equilibrium moisture content in four hardwoods below fiber saturation point with magnetic resonance microimaging. Wood Sci Technol 49, 1251–1268 (2015). https://doi.org/10.1007/s00226-015-0751-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0751-7

Keywords

Navigation