Skip to main content
Log in

X-ray computed tomography of wood-adhesive bondlines: attenuation and phase-contrast effects

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edges complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The article discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ASTM-D-5155 (2010) Standard test methods for polyurethane raw materials: Determination of the isocyanate content of aromatic isocyanates vol ASTM D 5155-10. ASTM International, West Conshohocken, PA

  • ASTM-D-5965 (2007) Standard test method for specific gravity of coating powders vol ASTM B 5965-02. ASTM International, West Conshohocken, PA

  • Banhart J (2008) Introduction. In: Banhart J (ed) Advanced tomographic methods in materials research and engineering. Oxford University Press, Oxford, NY, pp 3–18

    Chapter  Google Scholar 

  • Benaglia T, Chauveau D, Hunter DR, Young D (2009) mixtools: An R package for analyzing finite mixture models. J Stat Softw 32:1–29

    Article  Google Scholar 

  • Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee WK, Cloetens P (2007) Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. 1. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J Microsc 227:51–71

    Article  PubMed  Google Scholar 

  • Boone MN, Devulder W, Dierick M, Brabant L, Pauwels E, Van Hoorebeke L (2012) Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging. J Opt Soc Am A 29:2667–2672

    Article  Google Scholar 

  • Cao Y (2010) Characterization of PF/PVAc hybrid adhesive-wood interaction and its effect on wood strand composites performance. MS thesis, Washington State University

  • Chen H-H et al (2011) Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy. J Nanobiotechnol 9:14

    Article  CAS  Google Scholar 

  • Cloetens P, Pateyron-Salomé M, Buffière JY, Peix G, Baruchel J, Peyrin F, Schlenker M (1997) Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81:5878–5886. doi:10.1063/1.364374

    Article  CAS  Google Scholar 

  • Cloetens P, Ludwig W, Boller E, Helfen L, Salvo L, Mache R, Schlenker M (2002) Quantitative phase contrast tomography using coherent synchrotron radiation. In: Proceedings of SPIE, pp 82–91

  • De Witte Y, Boone M, Vlassenbroeck J, Dierick M, Van Hoorebeke L (2009) Bronnikov-aided correction for X-ray computed tomography. J Opt Soc Am A Opt Image Sci Vis 26:890–894

    Article  PubMed  Google Scholar 

  • Dowd BA, Campbell GH, Marr RB, Nagarkar VV, Tipnis SV, Axe L, Siddons DP (1999) Developments in synchrotron X-ray computed microtomography at the National Synchrotron Light Source. In: SPIE’s international symposium on optical science, engineering, and instrumentation. International Society for Optics and Photonics, pp 224–236. doi:10.1117/12.363725

  • Ellis E (2006) Solutions to the problem of substitution of ERL 4221 for vinyl cyclohexene dioxide in Spurr low viscosity embedding formulations. Microsc Today 14:32–33

    CAS  Google Scholar 

  • Evans PD et al (2010) Visualization and numerical analysis of adhesive distribution in particleboard using X-ray micro-computed tomography. Int J Adhes Adhes 30:754–762. doi:10.1016/j.ijadhadh.2010.08.001

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Frazier CE (2003) Isocyanate wood binders. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. Marcel Dekker Inc, New York

    Google Scholar 

  • Frazier CE, Ni JW (1998) On the occurrence of network interpenetration in the wood-isocyanate adhesive interphase. Int J Adhes Adhes 18:81–87

    Article  CAS  Google Scholar 

  • Graafsma H, Martin T (2008) Detectors for synchrotron tomography. In: Banhart J (ed) Advanced tomographic methods in materials research and engineering. Oxford University Press, Oxford, pp 277–302

    Chapter  Google Scholar 

  • Gureyev TE, Mayo S, Wilkins SW, Paganin D, Stevenson AW (2001) Quantitative in-line phase-contrast imaging with multienergy X rays. Phys Rev Lett 86:5827–5830

    Article  CAS  PubMed  Google Scholar 

  • Hass P, Wittel FK, McDonald SA, Marone F, Stampanoni M, Herrmann HJ, Niemz P (2010) Pore space analysis of beech wood: the vessel network. Holzforschung 64:639–644. doi:10.1515/hf.2010.103

    Article  CAS  Google Scholar 

  • Hass P, Wittel F, Mendoza M, Herrmann H, Niemz P (2012) Adhesive penetration in beech wood: experiments. Wood Sci Technol 46:243–256. doi:10.1007/s00226-011-0410-6

    Article  CAS  Google Scholar 

  • Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 EV, Z = 1-92. Atom Data Nucl Data Tables 54:181–342

    Article  CAS  Google Scholar 

  • Hosen J (2010) Fundamental analysis of wood adhesion primers. Virginia Tech

  • Jakes JE, Gleber S-C, Vogt S, Hunt CG, Yelle DJ, Grigsby W, Frihart CR (2013) New synchrotron-based technique to map adhesive infiltration in wood cell walls. In: Proceedings of the 36th annual meeting of the Adhesion Society, Datona Beach, FL, p 3

  • Kamke FA, Nairn JA, Muszyński L, Paris JL, Schwarzkopf M, Xiao X (2014) Methodology for micro-mechanical analysis of an adhesive bond using micro computed x-ray tomography and numerical modeling. Wood Fiber Sci 46(1):1–14

    Google Scholar 

  • Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27:381–400. doi:10.1016/s0098-3004(00)00116-3

    Article  CAS  Google Scholar 

  • Kinney JH, Nichols MC (1992) X-ray tomographic microscopy (XTM) using synchrotron radiation. Annu Rev Mater Sci 22:121–152. doi:10.1146/annurev.ms.22.080192.001005

    Article  CAS  Google Scholar 

  • Mannes D, Niemz P, Lehmann E (2009a) Tomographic investigations of wood from macroscopic to microscopic scale. Wood Res 54:33–44

    Google Scholar 

  • Mannes D, Sonderegger W, Hering S, Lehmann E, Niemz P (2009b) Non-destructive determination and quantification of diffusion processes in wood by means of neutron imaging. Holzforschung 63:589–596. doi:10.1515/hf.2009.100

    CAS  Google Scholar 

  • Mannes D, Marone F, Lehmann E, Stampanoni M, Niemz P (2010) Application areas of synchrotron radiation tomographic microscopy for wood research. Wood Sci Technol 44:67–84. doi:10.1007/s00226-009-0257-2

    Article  CAS  Google Scholar 

  • Marone F, Stampanoni M (2012) Regridding reconstruction algorithm for real-time tomographic imaging. J Synchrotron Radiat 19:1029–1037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayo S, Davis T, Gureyev T, Miller P, Paganin D, Pogany A, Stevenson A, Wilkins S (2003) X-ray phase-contrast microscopy and microtomography. Opt Express 11:2289–2302. doi:10.1364/oe.11.002289

    Article  CAS  PubMed  Google Scholar 

  • Mayo SC, Chen F, Evans R (2010) Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. J Struct Biol 171:182–188. doi:10.1016/j.jsb.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  • Modzel G (2009) Computed X-ray analysis of wood-adhesive bonds. Dissertation, Oregon State University

  • Modzel G, Kamke FA, De Carlo F (2011) Comparative analysis of a wood-adhesive bondline. Wood Sci Technol 45:147–158. doi:10.1007/100226-010-0304-z

    Article  CAS  Google Scholar 

  • Muszyński L (2009) Imaging wood plastic composites (WPCs): X-ray computed tomography. A few promising techniques, and why we should pay attention. BioResources 4:1210–1221

    Google Scholar 

  • Muszyński L, Kamke FA, Nairn JA, Schwarzkopf M, Paris JL (2013) Integrated method for multi-scale/multi-modal investigation of micro-mechanical wood-adhesive interaction. In: Frihart CR, Hunt CG, Yan N (eds) Proceedings of the international conference on wood adhesives 2013, Toronto, ON. Forest Products Society, New York, p 16

  • Nairn JA, Kamke FA, Muszyński L, Paris J, Schwarzkopf M (2013) Direct 3D numerical simulation of stresses and strains in wood adhesive bondlines based on the actual specimen anatomy from X-ray tomography data. In: Frihart CR, Hunt CG, Yan N (eds) Proceedings of the international conference on wood adhesives 2013, Toronto, ON. Forest Products Society, New York, p 11

  • Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40. doi:10.1046/j.1365-2818.2002.01010.x

    Article  CAS  PubMed  Google Scholar 

  • Paris JL, Kamke F, Nairn JA, Schwarzkopf M, Muszyński L (2013) Wood-adhesive penetration: non-destructive, 3D visualization and quantification. In: Frihart CR, Hunt CG, Yan N (eds) Proceedings of the international conference on wood adhesives 2013, Toronto, ON. Forest Products Society, New York, p 13

  • Paris J, Kamke F, Mbachu R, Gibson S (2014) Phenol formaldehyde adhesives formulated for advanced X-ray imaging in wood-composite bondlines. J Mater Sci 49:580–591. doi:10.1007/s10853-013-7738-2

    Article  CAS  Google Scholar 

  • Park B-D, Riedl B, Yoon Soo K, So WT (2002) Effect of synthesis parameters on thermal behavior of phenol–formaldehyde resol resin. J Appl Polym Sci 83:1415–1424. doi:10.1002/app.2302

    Article  CAS  Google Scholar 

  • Peele AG, Nugent KA (2008) Phase-contrast and holographic tomography. In: Banhart J (ed) Advanced tomographic methods in materials research and engineering. Oxford University Press, Oxford, pp 161–180

    Chapter  Google Scholar 

  • Rasband WS (2012) ImageJ, 1997–2012 edition. U. S. National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij/

  • Ren D (2010) Moisture-cure polyurethane wood adhesives: wood/adhesive interactions and weather durability. Virginia Tech

  • Russ JC (2011) The image processing handbook, 6th edn. CRC Press, Boca Raton

    Google Scholar 

  • Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Scholz G, Zauer M, Van den Bulcke J, Van Loo D, Pfriem A, Van Acker J, Militz H (2010) Investigation on wax-impregnated wood. Part 2: study of void spaces filled with air by He pycnometry, Hg intrusion porosimetry, and 3D X-ray imaging. Holzforschung 64:587–593. doi:10.1515/hf.2010.090

    CAS  Google Scholar 

  • Schwarzkopf M, Muszyński L, Nairn J (2013) Stereoscopic optical method for the assessment of load transfer patterns across the adhesive bond interphase. In: Frihart CR, Hunt CG, Yan N (eds) Proceedings of the International Conference on Wood Adhesives 2013, Toronto, ON. Forest Products Society, New York, p 12

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Standfest G, Kranzer S, Petutschnigg A, Dunky M (2010) Determination of the microstructure of an adhesive-bonded medium density fiberboard (MDF) using 3-D sub-micrometer computer tomography. J Adhes Sci Technol 24:1501–1514. doi:10.1163/016942410x501052

    Article  CAS  Google Scholar 

  • Standfest G, Kutnar A, Plank B, Petutschnigg A, Kamke F, Dunky M (2012) Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography. Wood Sci Technol 47(1):121–139. doi:10.1007/s00226-012-0496-5

    Article  Google Scholar 

  • Steppe K, Cnudde V, Girard C, Lemeur R, Cnudde JP, Jacobs P (2004) Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J Struct Biol 148:11–21. doi:10.1016/j.jsb.2004.05.001

    Article  PubMed  Google Scholar 

  • Stockel F, Konnerth J, Moser J, Kantner W, Gindl-Altmutter W (2012) Micromechanical properties of the interphase in pMDI and UF bond lines. Wood Sci Technol 46:611–620. doi:10.1007/s00226-011-0432-0

    Article  Google Scholar 

  • Trtik P, Dual J, Keunecke D, Mannes D, Niemz P, Stähli P (2007) 3D imaging of microstructure of spruce wood. J Struct Biol 159:46–55. doi:10.1016/j.jsb.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  • Walther T, Thoemen H (2009) Synchrotron X-ray microtomography and 3D image analysis of medium density fiberboard (MDF). Holzforschung 63:581–587. doi:10.1515/hf.2009.093

    Article  CAS  Google Scholar 

  • Weitkamp T, Haas D, Wegrzynek D, Rack A (2011) ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Radiat 18:617–629. doi:10.1107/s0909049511002895

    Article  CAS  PubMed  Google Scholar 

  • Wildenschild D, Hopmans JW, Vaz CMP, Rivers ML, Rikard D, Christensen BSB (2002) Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J Hydrol 267:285–297. doi:10.1016/s0022-1694(02)00157-9

    Article  Google Scholar 

  • Wu X, Liu H, Yan A (2008) Phase-contrast X-ray tomography: contrast mechanism and roles of phase retrieval. Eur J Radiol 68:S8–S12. doi:10.1016/j.ejrad.2008.04.027

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Financial support was provided by the Wood-Based Composites Center, a National Science Foundation Industry/University Cooperative Research Center; project code A-04-KA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse L. Paris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paris, J.L., Kamke, F.A. & Xiao, X. X-ray computed tomography of wood-adhesive bondlines: attenuation and phase-contrast effects. Wood Sci Technol 49, 1185–1208 (2015). https://doi.org/10.1007/s00226-015-0750-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0750-8

Keywords

Navigation