Wood Science and Technology

, Volume 49, Issue 2, pp 319–330 | Cite as

XPS depth profile of plasma-activated surface of beech wood (Fagus sylvatica) and its impact on polyvinyl acetate tensile shear bond strength

  • Pavel Král
  • Jozef Ráhel’
  • Monika Stupavská
  • Jan Šrajer
  • Petr Klímek
  • Pawan Kumar Mishra
  • Rupert Wimmer
Original

Abstract

High surface selectivity of atmospheric pressure plasma treatment was demonstrated experimentally by XPS depth profile measurement of plasma-activated beech wood. Wood surface activated by diffuse coplanar surface barrier discharge was sequentially sputtered by Ar+ ion beam followed by immediate XPS analysis of freshly uncovered surface. According to the assessment, less than 330 nm of sputtered material was sufficient for complete removal of all plasma-formed functional groups. For the sake of practical implications of minimal vertical extent of plasma-mediated changes, the character of tensile shear bond strength improvement of polyvinyl acetate adhesive was examined with respect to its specific mass. A constant additive character of plasma activation to the bond strength was observed within the examined range of adhesive-specific mass.

References

  1. Acda MN, Devera EE, Cabangon RJ, Ramos HJ (2012) Effects of plasma modification on adhesion properties of wood. Int J Adhes Adhes 32(1):70–75Google Scholar
  2. Avramidis G, Nothnick E, Militz H, Viöl W, Wolkenhauer A (2011a) Accelerated curing of PVAc adhesive on plasma-treated wood veneers. Eur J Wood Prod 69(2):329–332CrossRefGoogle Scholar
  3. Avramidis G, Scholz G, Nothnick E, Militz H, Viöl W, Wolkenhauer A (2011b) Improved bondability of wax-treated wood following plasma treatment. Wood Sci Technol 45:359–368CrossRefGoogle Scholar
  4. Avramidis G, Klarhöfer L, Maus-Friedrichs W, Militz H, Viöl W (2012) Influence of air plasma treatment at atmospheric pressure on wood extractives. Polym Degrad Stab 97(3):469–471CrossRefGoogle Scholar
  5. Busnel F, Blanchard V, Prégent J, Stafford L, Riedl B, Blanchet P, Sarkissian A (2010) Modification of sugar maple (Acer saccharum) and black spruce (Picea mariana) wood surfaces in a dielectric barrier discharge (DBD) at atmospheric pressure. J Adhes Sci Technol 24(8):1401–1413CrossRefGoogle Scholar
  6. Homola T, Matoušek J, Kormunda M, Wu LYL, Černák M (2013) Plasma treatment of glass surfaces using diffuse coplanar surface barrier discharge in ambient air. Plasma Chem Plasma Process 33(5):881–894CrossRefGoogle Scholar
  7. Inari GN, Petrissans M, Dumarcay S, Lambert J, Ehrhardt JJ, Sernek M, Gerardin P (2011) Limitation of XPS for analysis of wood species containing high amounts of lipophilic extractives. Wood Sci Technol 45:369–382CrossRefGoogle Scholar
  8. Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55(6):56–563CrossRefGoogle Scholar
  9. Kormunda M, Pavlik J (2010) Characterization of oxygen and argon ion flux interaction with PET surfaces by in situ XPS and ex situ FTIR. Polym Degrad Stab 95(9):1783–1788CrossRefGoogle Scholar
  10. Lux C, Szalay Z, Beikircher W, Kováčik D, Pulker HK (2013) Investigation of the plasma effects on wood after activation by diffuse coplanar surface barrier discharge. Eur J Wood Prod 71(5):539–549CrossRefGoogle Scholar
  11. Odrášková M, Ráheľ J, Zahoranová A, Tiňo R, Černák M (2008) Plasma activation of wood surface by diffuse coplanar surface barrier discharge. Plasma Chem Plasma Processing 28(2):203–211CrossRefGoogle Scholar
  12. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747CrossRefGoogle Scholar
  13. Podgorski L, Chevet B, Onic L, Merlin A (2000) Modification of wood wettability by plasma and corona treatments. Int J Adhes Adhes 20(2):103–111CrossRefGoogle Scholar
  14. Potočňáková L, Hnilica J, Kudrle V (2013) Increase of wettability of soft- and hardwoods using microwave plasma. Int J Adhes Adhes 45:125–131CrossRefGoogle Scholar
  15. Rehn P, Wolkenhauer A, Bente M, Förster S, Viöl W (2003) Wood surface modification in dielectric barrier discharges at atmospheric pressure. Surf Coat Technol 174–175:515–518CrossRefGoogle Scholar
  16. Sakata I, Morita M, Tsuruta N, Morita K (1993) Activation of wood surface by corona treatment to improve adhesive bonding. J Appl Polym Sci 49(7):1251–1258CrossRefGoogle Scholar
  17. Stehr M, Johansson I (2000) Weak boundary layers on wood surfaces. J Adhes Sci Technol 14(10):1211–1224CrossRefGoogle Scholar
  18. Tóth A, Černáková L, Černák M, Kunovská K (2007) Surface analysis of groundwood paper treated by diffuse coplanar surface barrier discharge (DCSBD) type atmospheric plasma in air and in nitrogen. Holzforschung 61(5):528–531CrossRefGoogle Scholar
  19. Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2008) Plasma treatment of wood-plastic composites to enhance their adhesion properties. J Adhes Sci Technol 22(16):2025–2037CrossRefGoogle Scholar
  20. Yu LD, Phanchaisri B, Apavatjrut P, Anuntalabhochai S, Vilaithong T, Brown IG (2002) Some investigations of ion bombardment effects on plant cell wall surfaces. Surf Coat Technol 158–159:146–150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pavel Král
    • 1
  • Jozef Ráhel’
    • 2
  • Monika Stupavská
    • 2
  • Jan Šrajer
    • 1
  • Petr Klímek
    • 1
  • Pawan Kumar Mishra
    • 1
  • Rupert Wimmer
    • 1
  1. 1.Department of Wood Science, Faculty of Forestry and Wood TechnologyMendel UniversityBrnoCzech Republic
  2. 2.Department of Physical Electronics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations