Skip to main content
Log in

Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this paper was to investigate pore-size distributions in the nano-diameter range of wood and their alteration due to thermal modification of wood using thermoporosimetry, and to find out what consequences can be derived regarding the biological durability. Thermoporosimetry is a technique that is based on the measurement using differential scanning calorimetry (DSC). The method is based on the fact that frozen water contained within small pores is at elevated pressure and therefore has a depressed melting temperature as a function of the appropriate pore diameter. In addition, the fiber saturation points (FSP) were determined by DSC. The former were performed in an isothermal-step method and the latter using the continuous heating-up method. Native and thermally modified twin samples of Norway spruce (Picea abies (L.) Karst.), Sycamore maple (Acer pseudoplatanus L.) and European ash (Fraxinus excelsior L.) were analyzed. The results clearly show that the pore shares of wood for the measurable diameter range between 4 and 400 nm decrease considerably in all studied wood species due to thermal modification of the wood. Furthermore, thermal modification of wood leads to a decreased FSP for all studied wood species. For evaluation as well as reproducibility of the results of pore-size distribution and FSP, the consideration of sensible heat and specific heat of fusion plays an important role. If this is not done, it can lead to misinterpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida G, Hernández RE (2006) Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Sci Technol 40:599–613

    Article  CAS  Google Scholar 

  • Aristov YI, Kovalevskaya YA, Tokarev MM, Paukov IE (2010) Low temperature heat capacity of the system “silica gel–calcium chloride–water”. J Therm Anal Calorim 103:773–778

    Article  Google Scholar 

  • Babiak M, Kudela J (1995) A contribution to the definition of the fiber saturation point. Wood Sci Technol 29:217–226

    CAS  Google Scholar 

  • Chen CM, Wangaard F (1968) Wettability and the hysteresis effect in the sorption of water vapor by wood. Wood Sci Technol 2:177–187

    Google Scholar 

  • Dieste A, Krause A, Mai C, Sèbe G, Grelier S, Militz H (2009) Modification of Fagus sylvatica L. with 1,3-dimethylol-4,5-dihydroxy ethylene urea (DMDHEU). Part 2: pore size distribution determined by differential scanning calorimetry. Holzforschung 63:89–93

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2005) Ultrastructural changes in a holocellulose pulp revealed by enzymes, thermoporosimetry and atomic force microscopy. Holzforschung 59:589–597

    Article  Google Scholar 

  • Hill CAS (2006) Wood modification. Chemical thermal and other processes. Wiley, Chichester

    Book  Google Scholar 

  • Hill CAS (2008) The reduction in the fibre saturation point of wood due to chemical modification using anhydride reagents: a reappraisal. Holzforschung 62:423–428

    Article  CAS  Google Scholar 

  • Hill CAS, Forster SC, Farahani MRM, Hale MDC, Ormondroyd GA, Williams GR (2005) An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. Int Biodeterior Biodegrad 55:69–76

    Article  CAS  Google Scholar 

  • Kollmann F, Fengel D (1965) Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz Roh Werkst 23:461–468

    CAS  Google Scholar 

  • Książczak A, Radomski A, Zielenkiewicz T (2003) Nitrocellulose porosity—thermoporometry. J Therm Anal Calorim 74:559–568

    Article  Google Scholar 

  • Kürschner K, Melcerová A (1965) Über die chemischen Veränderungen des Buchenholzes bei thermischer Behandlung. Teil I. Chemische Veränderungen von Sägespänen bei 1-28 tägiger Erhitzung auf 80–160 °C. Holzforschung 19:161–171

    Article  Google Scholar 

  • Landry M (2005) Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta 433:27–50

    Article  CAS  Google Scholar 

  • Lekounougou S (2009) Effect of heat treatment on extracellular enzymatic activities involved in beech wood degradation by Trametes versicolor. Wood Sci Technol 43:331–341

    Article  CAS  Google Scholar 

  • Maloney T (2000) Messen der Porengrößenverteilung mittels DSC. UserCom Mettler Toledo 12:15–17

    Google Scholar 

  • Maloney TC, Paulapuro H (1999) The formation of pores in the cell wall. J Pulp Pap Sci 25:430–436

    CAS  Google Scholar 

  • Park S, Venditti R, Jameel H, Pawlak J (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103

    Article  CAS  Google Scholar 

  • Peters J, Fischer K, Fischer S (2008) Characterization of emissions from thermally modified wood and their reduction by chemical treatment. Bioresources 3:491–502

    Google Scholar 

  • Pétrissans A, Younsi R, Chaouch M, Gérardin P, Pétrissans M (2012) Experimental and numerical analysis of wood thermodegradation: mass loss kinetics. J Therm Anal Calorim 109:907–914

    Article  Google Scholar 

  • Repellin V, Guyonnet R (2005) Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung 59:28–34

    Article  CAS  Google Scholar 

  • Roffael E, Kraft R (2012) Einfluss der thermischen Modifizierung von Holz auf das Wasserrückhaltevermögen (WRV-Wert). Eur J Wood Prod 70:393–395

    Article  Google Scholar 

  • Siau J (1995) Wood: influence of moisture on physical properties. Virginia Polytechnic Institute and State University, VA

    Google Scholar 

  • Simpson L, Barton AFM (1991) Determination of the fibre saturation point in whole wood using differential scanning calorimetry. Wood Sci Technol 25:301–308

    Article  CAS  Google Scholar 

  • Stephan P, Schaber K, Stephan K, Mayinger F (2010) Thermodynamik. Grundlagen und Technische Anwendungen. Springer, Heidelberg

    Google Scholar 

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Topgaard D, Söderman O (2002) Self-diffusion of nonfreezing water in porous carbohydrate polymer systems studied with nuclear magnetic resonance. Biophys J 83:3596–3606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagenführ A, Scholz F (2007) Taschenbuch der Holztechnik. Hanser Fachbuch, München

    Google Scholar 

  • Weise U, Maloney T, Paulapuro H (1996) Quantification of water in different states of interaction with wood pulp fibres. Cellulose 3:189–202

    Article  Google Scholar 

  • Zauer M (2011) Untersuchung zur Porenstruktur und kapillaren Wasserleitung im Holz und deren Änderung infolge einer thermischen Modifikation. Doctoral thesis, TU Dresden

  • Zauer M, Pfriem A, Wagenführ A (2013) Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry. Wood Sci Technol 47(6):1197–1211

    Google Scholar 

  • Zelinka SL, Lambrecht MJ, Glass SV, Wiedenhoeft AC, Yelle DJ (2012) Examination of water phase transition in Loblolly pine and cell wall components by differential scanning calorimetry. Thermochim Acta 533:38–45

    Article  Google Scholar 

Download references

Acknowledgments

This publication is based on tests and results that were financially supported by the German Research Foundation (DFG WA 1540/7-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Zauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zauer, M., Kretzschmar, J., Großmann, L. et al. Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry. Wood Sci Technol 48, 177–193 (2014). https://doi.org/10.1007/s00226-013-0597-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-013-0597-9

Keywords

Navigation