Skip to main content
Log in

Investigation on hydrophobic modification of bamboo flour surface by means of atom transfer radical polymerization method

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

To convert the hydrophilic surface of bamboo flour into a hydrophobic surface, methyl methacrylate (MMA) was grafted onto bamboo flour surface by means of atom transfer radical polymerization (ATRP) method. The grafted bamboo flour was characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), water contact angle and thermogravimetric analysis. The results from FTIR and SEM have confirmed that MMA groups have been successfully grafted onto bamboo surface by means of the ATRP method, which caused the water contact angle increase to be 128.7°, i.e., hydrophilic bamboo flour turned into hydrophobicity. However, the thermal stability of grafted bamboo flour decreased compared with pure bamboo flour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bech L, Elzein T, Meylheuc T, Ponche A, Brogly M, Lepoittevin B, Roger P (2009) Atom transfer radical polymerization of styrene from different poly(ethylene terephthalate) surfaces: films, fibers and fabrics. Eur Polym J 45:246–255

    Article  CAS  Google Scholar 

  • Carlmark A, Malmström E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901

    Article  CAS  PubMed  Google Scholar 

  • Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273:505–511

    Article  CAS  PubMed  Google Scholar 

  • Castelvetro V, Geppi M, Giaiacopi S, Mollica G (2007) Cotton fibers encapsulated with homo- and block copolymers: synthesis by the atom transfer radical polymerization grafting-from technique and solid-state NMR dynamic investigations. Biomacromolecules 8:498–508

    Article  CAS  PubMed  Google Scholar 

  • Fu YC, Li G, Yu HP, Liu YX (2012) Hydrophobic modification of wood via surface-initiated ARGET ATRP of MMA. Appl Surf Sci 258:2529–2533

    Article  CAS  Google Scholar 

  • Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  CAS  Google Scholar 

  • Glaied O, Dubé M, Chabot B, Daneault C (2009) Synthesis of cationic polymer-grafted cellulose by aqueous ATRP. J Colloid Interface Sci 333:145

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris(triphenylphosphine) ruthenium (II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28:1721–1723

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Lakkad SC, Patel JM (1981) Mechanical properties of bamboo: a natural composite. Fiber Sci Technol 14:319–322

    Article  Google Scholar 

  • Lin CX, Zhan HY, Liu MH, Fu SY, Zhang JJ (2009) Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym 78:432–438

    Article  CAS  Google Scholar 

  • Lindqvist J, Malmström E (2006) Surface modification of natural substrates by atom transfer radical polymerization. J Appl Polym Sci 100:4155–4162

    Article  CAS  Google Scholar 

  • Liu ZT, Sun CA, Liu ZW, Lu J (2008) Adjustable wettability of methyl methacrylate modified ramie fiber. J Appl Polym Sci 109:2888–2894

    Article  CAS  Google Scholar 

  • Liu PS, Chen Q, Wu SS, Shen J, Lin SC (2010) Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Memb Sci 350:387–394

    Article  CAS  Google Scholar 

  • Meng T, Gao X, Zhang J, Yuan JY, Zhang YZ, He JS (2009) Graft copolymers prepared by atom transfer radical polymerization(ATRP) from cellulose. Polymer 50:447–454

    Article  CAS  Google Scholar 

  • Nair KG, Dufresne A (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4:1835–1842

    Article  CAS  Google Scholar 

  • Nyström D, Lindqvist J, Östmark E, Antoni P, Carlmark A, Hult A, Malmström E (2009) Superhydrophobic and self-cleaning bio-Fiber surfaces via ATRP and subsequent postfunctionalization. ACS Appl Mater Interfaces 1:816–823

    Article  PubMed  Google Scholar 

  • Plackett D, Jankova K, Egsgaard H, Hvilsted S (2005) Modification of jute fibers with polystyrene via atom transfer radical polymerization. Biomacromolecules 6:2474–2484

    Article  CAS  PubMed  Google Scholar 

  • Shen DW, Yu H, Huang Y (2006) Synthesis of graft copolymer of ethyl cellulose through living polymerization and its self-assembly. Cellulose 13:235–244

    Article  CAS  Google Scholar 

  • Singh N, Husson SM, Zdyrko B, Luzinov I (2005) Surface modification of microporous PVDF membranes by ATRP. J Memb Sci 262:81–90

    Article  CAS  Google Scholar 

  • Singh N, Chenb Z, Tomer N, Wickramasinghe SR, Soice N, Husson SM (2008) Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. J Memb Sci 311:225–234

    Article  CAS  Google Scholar 

  • Wang JS, Matyjaszewski K (1995) Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615

    Article  CAS  Google Scholar 

  • Wang Y, Zhang X, Yan JL, Xiao Y, Lang MD (2011) Surface modification of hydroxyapatite with poly(methyl methacrylate) via surface-initiated ATRP. Appl Surf Sci 257:6233–6238

    Article  CAS  Google Scholar 

  • Worthley CH, Constantopoulos KT, Pillar RJ, Matisons JG (2011) Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance. J Membr Sci 385–386:30–39

    Article  Google Scholar 

  • Xiao MM, Li SZ, Zheng AN, Xiao HN (2011) Surface-initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83:512–519

    Article  CAS  Google Scholar 

  • Xing TL, Hu WL, Li SW, Chen GQ (2012) Preparation, structure and properties of multi-functional silk via ATRP method. Appl Surf Sci 258:3208–3213

    Article  CAS  Google Scholar 

  • Xu FJ, Li J, Yuan SJ, Zhang ZX, Kang ET, Neoh KG (2008) Thermo-responsive porous membranes of controllable porous morphology from triblock copolymers polycaprolactone and poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Biomacromolecules 9:331–339

    Article  CAS  PubMed  Google Scholar 

  • Zampano G, Bertoldo M, Bronco S (2009) Poly(ethyl acrylate) surface-initiated ATRP grafting from wood pulp cellulose fibers. Carbohydr Polym 75:22–31

    Article  CAS  Google Scholar 

  • Zhen WJ, Lu CH (2012) Surface modification of thermoplastic poly(vinyl alcohol)/saponite nanocomposites via surface-initiated atom transfer radical polymerization enhanced by air dielectric discharges barrier plasma treatment. Appl Surf Sci 258:6969–6976

    Article  CAS  Google Scholar 

  • Zhong JF, Chai XS, Fu SY (2012) Homogeneous grafting poly (methyl methacrylate) on cellulose by atom transfer radical polymerization. Carbohydr Polym 87:1869–1873

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Program for National Natural Science Foundation of China (Nos.31170535 and 30771683). The authors really appreciated the help of Yanhua Zhang (Northeast Forestry University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbin Yang or Jianbin Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, F., Yang, W., Song, J. et al. Investigation on hydrophobic modification of bamboo flour surface by means of atom transfer radical polymerization method. Wood Sci Technol 48, 289–299 (2014). https://doi.org/10.1007/s00226-013-0596-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-013-0596-x

Keywords

Navigation