Skip to main content
Log in

Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The paper describes for the first time the analysis of the structure of compressed wood using computed tomography. The anatomical structures of Douglas-fir and hybrid poplar before and after densification with the viscoelastic thermal compression (VTC) process were described by pore size distributions and mean pore sizes and compared. The compression of Douglas-fir mainly affected earlywood, while the compression of hybrid poplar mainly occurred in the vessels. In both wood species, the densification resulted in a significant decrease in the pore volumes. The porosity decreased to less than half of the original value for Douglas-fir earlywood and to approximately one-quarter for the vessels in hybrid poplar. The relevant mean pore sizes also decreased dramatically to about one-quarter compared to the original values. In contrast, latewood in Douglas-fir and libriform fibers in hybrid poplar are quite stable under compression. Douglas-fir latewood retained its original structure after compression and did not show any reduction in pore size. The results confirmed that the anatomical structure of VTC densified wood can be described by pore size distributions and mean pore sizes. However, in the case of broad or bimodal distributions, the mean pore sizes are of less significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balatinecz JJ, Kretschmann DE (2001) Chapter 9: properties and utilization of poplar wood. In: Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research Press, Ottawa

    Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibers. Biol Rev 79(2):461–472

    Article  PubMed  CAS  Google Scholar 

  • Blomberg J, Persson B (2004) Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. J Wood Sci 50(4):307–314

    Article  Google Scholar 

  • Clair B (2010) Maturation stress in developing tension wood. Plant physiology preview. Am Soc Plant Biol 123(3):1650–1658

    Google Scholar 

  • Dadswell HE, Hawley LF (1929) Chemical composition of wood in relation to physical characteristics. A preliminary study. Ind Eng Chem 21(10):973–975

    Article  CAS  Google Scholar 

  • Derome D, Griffa M, Koebel M, Carmeliet J (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173(1):180–190

    Article  PubMed  Google Scholar 

  • Dogu D, Tirak K, Candan Z, Unsal O (2010) Anatomical investigation of thermally compressed wood panels. BioResources 5(4):2640–2663

    Google Scholar 

  • Dwianto W, Morooka T, Norimoto M, Kitajima T (1999) Stress relaxation of Sugi (Cryptomeria japonica D. Don) wood in radial compression under high temperature steam. Holzforschung 53(5):541–546

    Article  CAS  Google Scholar 

  • Fang CH, Guibal D, Clair B, Gril J, Liu YM, Liu SQ (2008) Relationships between growth stress and wood properties in poplar I-69 (Populous deltoides Bartr.cv. “Lux” ex I-69/55). Ann For Sci 65(3):307 (1–9)

    Google Scholar 

  • Grabner M, Salaberger D, Okochi T (2009) The need of high resolution μ-X-ray CT in dendrochronology and in wood identification. In: ISPA 2009. 6th international symposium image and signal processing and analysis. 16–18 Sept 2009, Salzburg, Austria; Proceedings, IEEE, pp 349–352

  • Illman B, Dowd B (1999) High-resolution microtomography for density and spatial information about wood structures. In: Bonse U (ed) Developments in X-ray tomography II. SPIE, Bellingham, pp 198–204

  • Inoue M, Norimoto M, Tanahashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci 25(3):224–235

    CAS  Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘ghoy’). IAWA J 22(2):133–157

    Google Scholar 

  • Kamke FA, Sizemore H (2008) Viscoelastic thermal compression of wood. USP 7,404,422

  • Kärenlampi PP, Tynjälä P, Ström P (2003) Effect of temperature and compression on the mechanical behavior of steam-treated wood. J Wood Sci 49(4):298–304

    Article  Google Scholar 

  • Klasnja B, Kopitovic S, Orlovic S (2003) Variability of some wood properties of eastern cottonwood (Populus deltoides Bartr.) clones. Wood Sci Technol 37(3–4):331–337

    Article  CAS  Google Scholar 

  • Kultikova EV (1999) Structure and properties relationships of densified wood. M.S. Thesis, Wood Science and Forest Products, Virginia Polytechnic Institute and State University, USA

  • Kutnar A, Kamke AF (2010) Compression of wood under saturated steam, superheated steam and transient conditions at 150 °C, 160 °C, and 170 °C. Wood Sci Technol 46(1–3):73–88

    Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2008) The mechanical properties of densified VTC wood relevant for structural composites. Holz Roh Werkst 66(6):439–446

    Article  CAS  Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43(1):57–68

    Article  CAS  Google Scholar 

  • Lux J, Delisée C, Thibault X (2006) 3D characterization of wood based fibrous materials: an application. Image Anal Stereol 25(1):25–35

    Article  Google Scholar 

  • Mannes D, Marone F, Lehmann E, Stampanoni M, Niemz P (2010) Application areas of synchrotron radiation tomographic microscopy for wood research. Wood Sci Technol 44(1):67–84

    Article  CAS  Google Scholar 

  • Mayo SC, Evans R, Chen F, Lagerstrom R (2009) X-ray phase-contrast micro-tomography and image analysis of wood microstructure. J Phys, Conf Ser 186(1):12105

    Article  Google Scholar 

  • Mayo SC, Chen F, Evans R (2010) Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. J Struct Biol 171(2):182–188

    Article  PubMed  CAS  Google Scholar 

  • Modzel G, Kamke FA, De Carlo F (2011) Comparative analysis of a wood—adhesive bondline. Wood Sci Technol 45(1):147–158

    Article  CAS  Google Scholar 

  • Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3):287–293

    Article  CAS  Google Scholar 

  • Okochi T, Hoshino Y, Fujii H, Mitsutani T (2007) Nondestructive tree-ring measurements for Japanese oak and Japanese beech using micro-focus X-ray computed tomography. Dendrochronologia 24(2–3):155–164

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  • Pfriem A, Zauer M, Wagenführ A (2009) Alteration of the pore structure of spruce (Picea abies (L.) Karst.) and maple (Acer pseudoplatanus L.) due to thermal treatment as determined by helium pycnometry and mercury intrusion porosimetry. Holzforschung 63(1):94–98

    Article  CAS  Google Scholar 

  • Schneider A (1979) Beitrag zur Porositätsanalyse von Holz mit dem Quecksilber-Porosimeter. Eur J Wood Wood Prod 37(8):295–302

    Article  Google Scholar 

  • Schneider A (1982) Untersuchungen über die Porenstruktur von Holzspanplatten mit Hilfe der Quecksilber-Porosimetrie. Holz Roh Werkst 40(12):415–420

    Article  Google Scholar 

  • Schneider A, Wagner L (1974) Bestimmung der Porengrößenverteilung in Holz mit dem Quecksilber-Porosimeter. Eur J Wood Wood Prod 32(6):216–224

    Article  Google Scholar 

  • Scholz G, Zauer M, van den Bulcke J, van Loo D, Pfriem A, van Acker J, Militz H (2010) Investigation on wax-impregnated wood. Part 2: study of void spaces filled with air by He pycnometry, Hg intrusion porosimetry, and 3D X-ray imaging. Holzforschung 64(5):587–593

    CAS  Google Scholar 

  • Schweitzer F, Niemz P (1991) Untersuchungen zum Einfluß ausgewählter Strukturparameter auf die Porosität von Spanplatten. Holz Roh Werkst 49(1):27–29

    Article  CAS  Google Scholar 

  • Seborg RM, Millet MA, Stamm AJ (1945) Heat-stabilized compressed wood (Staypak). Mech Eng 67:25–31

    Google Scholar 

  • Standfest G, Kranzer S, Petutschnigg A, Dunky M (2010) Determination of the microstructure of an adhesive-bonded medium density fiberboard (MDF) using 3D sub-micrometer computer tomography. J Adhes Sci Technol 24(8):1501–1514

    Article  CAS  Google Scholar 

  • Trtik P, Dual J, Keunecke D, Mannes D, Niemz P, Stähli P, Kaestner A, Groso A, Stampanoni M (2007) 3D imaging of microstructure of spruce wood. J Struct Biol 159(1):46–55

    Article  PubMed  CAS  Google Scholar 

  • Winandy JE, Morrell JJ (1993) Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood Fiber Sci 25(3):278–288

    CAS  Google Scholar 

  • Wolcott MP (1989) Modelling viscoelastic cellular materials for the pressing of wood composites. PhD Dissertation. Virginia Tech, Blacksburg, Virginia, p 182

Download references

Acknowledgments

This project was gratefully supported by the ‘FHplus in COIN’ Programme of the Austrian Research Promotion Agency (FFG) under project number 198353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Standfest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Standfest, G., Kutnar, A., Plank, B. et al. Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography. Wood Sci Technol 47, 121–139 (2013). https://doi.org/10.1007/s00226-012-0496-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-012-0496-5

Keywords

Navigation