Skip to main content

Automated quantification of the impact of the wood-decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy

Abstract

The visualization and the quantification of microscopic decay patterns are important for the study of the impact of wood-decay fungi in general, as well as for wood-decay fungi and microorganisms with possible applications in biotechnology. In the present work, a method was developed for the automated localization and quantification of microscopic cell wall elements (CWE) of Norway spruce wood such as bordered pits, intrinsic defects, hyphae or alterations induced by white-rot fungus Physisporinus vitreus using high-resolution X-ray computed tomographic microscopy. In addition to classical destructive wood anatomical methods such as light or laser scanning microscopy, this method allows for the first time to compute the properties (e.g., area, orientation and size distribution) of CWE of the tracheids in a sample. This is essential for modeling the influence of microscopic CWE on macroscopic properties such as wood strength and permeability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Deflorio G, Hein S, Fink S, Spiecker H, Schwarze FWMR (2005) The application of wood decay fungi to enhance annual ring detection in three diffuse-porous hardwoods. Dendrchronologia 22:123–130

    Article  Google Scholar 

  • Derome D, Griffa M, Koebel M, Carmeliet J (2010) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173(1):180–190

    Google Scholar 

  • Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9(4):205–213

    Article  Google Scholar 

  • Fuhr MJ, Schubert M, Schwarze FWMR, Herrmann HJ (2011) Modeling hyphal growth of the wood decay fungus Physisporinus vitreus. Fungal Biol. doi:10.1016/j.funbio.2011.06.017

  • Gonzalez RC, Woods RE, Eddins SL (2009) Digital image processing using MATLAB. Gatesmark Publishing, Tennessee

    Google Scholar 

  • Illman B, Dowd B (1999) High resolution microtomography for density and spatial information about wood structures. In: Bonse U (ed) Proceedings of SPIE on developments in X-ray tomography II. Society of Photo-Optical Instrumentation Engineers, Washington, DC., pp 198–204

    Google Scholar 

  • Lehringer C, Hillebrand K, Richter K, Arnold M, Schwarze F, Militz H (2010) Anatomy of bioincised Norway spruce wood. Int Biodeterioration Biodegradation 64(5):346–355

    Article  Google Scholar 

  • Mai C, Kües U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63(5):477–494

    PubMed  Article  CAS  Google Scholar 

  • Majcherczyk A, Hüttermann A (1988) Bioremediation of wood treated with preservative using white-rot fungi. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 129–140

    Google Scholar 

  • Mannes D, Marone F, Lehmann E, Stampanoni M, Niemz P (2010) Application areas of synchrotron radiation tomographic microscopy for wood research. Wood Sci Technol 44(1):67–84

    Article  CAS  Google Scholar 

  • Mayo SC, Chen F, Evans R (2010) Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. J Struct Biol 171(2):182–188

    Google Scholar 

  • McGovern M, Senalik A, Chen G, Beall F, Reis H (2010) Detection and assessment of wood decay using x-ray computer tomography. In: Tomizuka M (ed) San Diego, CA, USA. SPIE, p 76474B

  • Messner K, Fackler K, Lamaipis P, Gindl W, Srebotnik E, Watanabe T (2002) Biotechnological wood modification. In: Proceedings of the international symposium on wood-based materials, part 2. Vienna University, Vienna, pp 45–49

    Google Scholar 

  • Meyer F (1994) Topographic distance and watershed lines. Signal Proces 38(1):113–125

    Article  Google Scholar 

  • Munch B, Trtik P, Marone F, Stampanoni M (2009) Stripe and ring artifact removal with combined wavelet—Fourier filtering. Optics Express 17(10):8567–8591

    PubMed  Article  Google Scholar 

  • Neuhäusler U, Schneider G, Ludwig W, Hambach D (2003) Phase contrast X-ray microscopy at 4 keV photon energy with 60 nm resolution. J Physique IV (Proceedings) 104:567–570

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber 9:62–66

    Article  Google Scholar 

  • Schubert M, Schwarze FMWR (2010) Evaluation of the interspecific competitive ability of the bioincising fungus Physisporinus vitreus. J Basic Microbiol. doi:10.1002/jobm.201000176

  • Schubert M, Dengler V, Mourad S, Schwarze FWMR (2009) Determination of optimal growth parameters for the bioincising fungus Physisporinus vitreus by means of response surface methodology. J Appl Microbiol 106(5):1734–1742

    PubMed  Article  CAS  Google Scholar 

  • Schubert M, Mourad S, Schwarze FWMR (2010) Radial basis function neural networks for modeling growth rates of the basidiomycetes Physisporinus vitreus and Neolentinus lepideus. Appl Microbiol Biotechnol 85:703–712

    PubMed  Article  CAS  Google Scholar 

  • Schwarze F (2007) Wood decay under the microscope. Fungal Biol Rev 1:133–170

    Article  Google Scholar 

  • Schwarze FWMR (2008) Diagnosis and prognosis of the development of wood decay in urban trees. ENSPEC, Melbourne

    Google Scholar 

  • Schwarze F (2009) Enhanced uptake of wood modification agents in ‘bioincised’ wood. In: The international research group on wood protection

  • Schwarze FWMR, Landmesser H (2000) Preferential degradation of pit membranes within tracheids by the basidiomycete Physisporinus vitreus. Holzforschung 54(5):461–462

    Article  CAS  Google Scholar 

  • Schwarze FWMR, Landmesser H, Zgraggen B, Heeb M (2006) Permeability changes in heartwood of Picea abies and Abies alba induced by incubation with Physisporinus vitreus. Holzforschung 60(4):450–454

    Article  CAS  Google Scholar 

  • Schwarze FWMR, Spycher M, Fink S (2008) Superior wood for violins—wood decay fungi as a substitute for cold climate. New Phytol 179(4):1095–1104

    PubMed  Article  Google Scholar 

  • Spycher M, Schwarze FWMR, Steiger R (2008) Assessment of resonance wood quality by comparing its physical and histological properties. Wood Sci Technol 42(4):325–342

    Article  CAS  Google Scholar 

  • Stampanoni M, Groso A, Isenegger A, Mikuljan G, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Böhler P, Meister D, Lange M, Abela R (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. Proc SPIE 6318(1):63180M

    Article  Google Scholar 

  • Stührk C, Fuhr M, Schubert M, Schwarze F (2010) Analyzing hyphal growth of the bioincising fungus Physisporinus vitreus with light-, confocal laser scanning- and, synchrotron X-ray tomographic microscopy. International Group on Wood Preservation, IRG 1020438. Biarritz, France, 2010. http://www.irg-wp.org/documents.htm

  • Trtik P, Dual J, Keunecke D, Mannes D, Niemz P, Stähli P, Kaestner A, Groso A, Stampanoni M (2007) 3D imaging of microstructure of spruce wood. J Struct Biol 159(1):46–55

    PubMed  Article  CAS  Google Scholar 

  • Van den Bulcke J, Masschaele B, Dierick M, Acker JV, Stevens M, Hoorebeke LV (2008) Three-dimensional imaging and analysis of infested coated wood with X-ray submicron CT. Int Biodeterioration Biodegradation 61(3):278–286

    Article  Google Scholar 

  • Van den Bulcke J, Boone M, Van Acker J, Van Hoorebeke L (2009) Three-dimensional X-ray imaging and analysis of fungi on and in wood. Microsc Microanal 15(5):395–402

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge contributions and support of (in alphabetical order) Francois Gaignat, Hans Herrmann, Christian Lehringer, David Mannes, Peter Niemz, Pavel Trtik and Falk Wittel. We thank Masuru Abuku and Frederica Marone for their assistance during the measurements and Dominique Derome for supplying the climatic chamber. The authors express their gratitude to the Swiss National Foundation (SNF) No. 205321-121701 for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Fuhr.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuhr, M.J., Stührk, C., Münch, B. et al. Automated quantification of the impact of the wood-decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy. Wood Sci Technol 46, 769–779 (2012). https://doi.org/10.1007/s00226-011-0442-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-011-0442-y

Keywords

  • Cell Wall Structure
  • Cell Wall Damage
  • Cylindrical Projection
  • Tracheid Cell Wall
  • Tangential Cell Wall