Skip to main content
Log in

Probabilistic strength prediction of adhesively bonded timber joints

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The strength prediction of adhesively bonded timber joints is difficult due to the anisotropic and brittle nature of the adherends, the complex stress distribution as well as the uncertainties regarding the associated material resistance. This paper describes a probabilistic method for the strength prediction of balanced double lap timber joints. The method considers the statistical variation and the size effect in the strength of timber using a Weibull statistical function. The design method presents an explanation for the increased resistance of local zones subjected to high stress peaks as it takes into account not only the magnitude of the stress distributions, but also the volume over which they act. The predicted joint strengths are slightly underestimated compared with the experimental results due to inaccurate upper tail modelling of the material strength by the Weibull statistical distribution. The probabilistic method provides reasonable results for brittle joint failure and has immediate application in the design of adhesively bonded timber joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams RD, Pepiatt NA (1974) Stress analysis of adhesive bonded lab joints. J Strain Anal 9:185–196

    Article  Google Scholar 

  • Barrett JD, Foschi RO, Fox SP (1975) Perpendicular-to-grain strength of Douglas-fir. Can J Civil Eng 2:50–57

    Article  Google Scholar 

  • Bažant ZP (1999) Size effect on structural strength: a review. Arch Appl Mech 69(9–10):703–725

    Google Scholar 

  • Bohannan B (1966) Effect of size on bending strength of wood members. Research paper FPL 56, Forest Products Laboratory, Madison

  • Clarke JL (1996) Structural design of polymer composites - eurocomp design code and handbook. London: E & FN Spon, London

  • Clouston P, Lam F, Barrett JD (1998) Incorporating size effects in the Tsai-Wu strength theory for Douglas-fir laminated veneer. Wood Sci Technol 32(3):215–226

    CAS  Google Scholar 

  • Colling F (1986) Einfluss des Volumens und der Spannungsverteilung auf die Festigkeit eines Rechteckträgers (in German). Holz Roh- Werkst 44(4):121–125

    Article  Google Scholar 

  • Crocombe AD, Richardson G (1995) A Unified approach for predicting the strength of cracked and non-cracked adhesive joints. J Adhesion 49:211–244

    Article  CAS  Google Scholar 

  • Da Silva LFM, Das Neves PJC, Adams RD, Wang A, Spelt JK (2009) Analytical models of adhesively bonded joints–Part II: comparative study. Int J Adhesion Adhesives 29(3):331–341

    Google Scholar 

  • Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz - Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften. (in German). Springer, Vienna, Austria

    Google Scholar 

  • Foschi RO, Barrett JD (1976) Longitudinal shear strength of Douglas-Fir. Can J Civil Eng 3(2):198–208

    Article  Google Scholar 

  • Grosse M, Rautenstrauch K (2004) Numerical modelling of timber and fasteners used in timber-concrete-composite constructions. In: Proceedings of the CIB-W18. Edinburgh, Scotland, 37-7-16

  • Hemmer K (1984) Versagensarten des Holzes der Weisstanne unter mehrachsiger Beanspruchung. (in German). Dissertation, Universität Karlsruhe, Germany

  • Kasal B, Leichti RJ (2005) State of the art in multiaxial phenomenological failure criteria for wood members. Prog Struct Eng Mater 7(1):3–13

    Article  Google Scholar 

  • Norris CB (1962) Strength of orthotropic materials subjected to combined stresses. Report No.1816, Forest Products Laboratory, Madison

  • Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. Wiley, Chichester

    Google Scholar 

  • Spengler R (1986) Festigkeitsverhalten von Brettelementen aus Fichte unter zweiachsiger Beanspruchung. (in German). Report 68098450340, Technical University Munich, Germany

  • Tannert T, Vallée T, Hehl S (2011) Experimental and numerical investigations on adhesively bonded timber joints. doi:10.1007/s00226-011-0423-1

  • Vallée T, Correia JR, Keller T (2006) Probabilistic strength prediction for double lap joints composed of pultruded GFRP profiles–Part II: strength prediction. Compos Sci Technol 66(13):1915–1930

    Article  Google Scholar 

  • Vallée T, Keller T, Fourestey G, Fournier B, Correia JR (2009) Adhesively bonded joints composed of pultruded adherends: considerations at the upper tail of the material strength statistical distribution. Probabilistic Eng Mech 24(3):358–366

    Article  Google Scholar 

  • Weibull W (1939) A statistical theory of strength of materials. Proceedings of the Royal Swedish Institute, Research No.151, Stockholm, Sweden

  • Xavier JC, Garrido NM, Oliveira M, Morais JL, Camanho PP, Pierron F (2004) A comparison between the Iosipescu and off-axis shear test methods for the characterization of Pinus Pinaster Ait. Composites Part A Appl Sci Manuf 35(7–8):827–840

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tannert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tannert, T., Vallée, T. & Hehl, S. Probabilistic strength prediction of adhesively bonded timber joints. Wood Sci Technol 46, 503–513 (2012). https://doi.org/10.1007/s00226-011-0424-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-011-0424-0

Keywords

Navigation