Skip to main content
Log in

Measurement of standard and off-axis elastic moduli and Poisson’s ratios of spruce and yew wood in the transverse plane

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

It is well known that in the radial–tangential plane of softwoods, the elastic modulus in the principal directions is clearly higher than the off-axis elastic moduli, which decrease to a minimum at a growth ring angle α of about 45°. However, this angular dependency was experimentally proven by only a few early publications. The aims of this study were (1) to analyze this relationship with up-to-date equipment in compression tests on miniature softwood specimens with varying growth ring angles and (2) to compare the experimental results with those calculated by a tensor transformation to assess whether it is admissible to treat the investigated wood species as orthotropic materials. Two softwoods with distinctly different anatomic structures (Norway spruce and common yew) were chosen, and further properties such as Poisson’s ratios were determined. The results confirm the above-mentioned angle-dependent tendency for spruce elasticity, but also show that it is not valid for softwoods in general since the behavior of yew was completely different. The tissue textures of both species, particularly density and density distribution, were discussed as possible reason for these observed differences. The determined Poisson’s ratios for principal and off-axis load directions may be useful for modeling of material behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bergander A, Salmén L (2000) Variations in transverse fibre wall properties: relations between elastic properties and structure. Holzforschung 54:654–660

    Article  CAS  Google Scholar 

  • Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger Publishing Company, Malabar

    Google Scholar 

  • Bucur V, Archer RR (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18:255–265

    Article  Google Scholar 

  • Burgert I (2000) Die mechanische Bedeutung der Holzstrahlen im lebenden Baum. Dissertation, University of Hamburg

  • Forest Products Laboratory (2000) Wood handbook—wood as an engineering material. University Press of the Pacific, Honolulu

    Google Scholar 

  • Grimsel M (1999) Mechanisches Verhalten von Holz: Struktur- und Parameteridentifikation eines anisotropen Werkstoffes. Dissertation, Technische Universität Dresden

  • Hearmon RFS (1948) The elasticity of wood and plywood. DSIR, For Prod Special Rept No. 7. HMSO, London

  • Hearmon RFS, Barkas WW (1941) The effect of grain direction on the Young’s moduli and rigidity moduli of beech and Sitka spruce. Proc Phys Soc 53:674–680

    Article  Google Scholar 

  • Holmberg H (2000) Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.). Holz Roh Werkst 58:91–95

    Article  Google Scholar 

  • Hörig H (1933) Zur Elastizität des Fichtenholzes. 1. Folgerungen aus Messungen von H. Carrington an Spruce. Z Tech Phys 12:369–379

    Google Scholar 

  • Jenkin CF (1920) Report on materials used in the construction of aircraft engines. London: HMSO (Her Majesty’s Stationery Office)

  • Kabir MF, Sidek HAA, Daud WM, Khalid K (1997) Effect of moisture content and grain angle on the ultrasonic properties of rubber wood. Holzforschung 51:263–267

    Article  CAS  Google Scholar 

  • Kennedy RW (1968) Wood in transverse compression. For Prod J 18:36–40

    Google Scholar 

  • Keunecke D, Hering S, Niemz P (2008) Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Sci Technol 42:633–647

    Article  CAS  Google Scholar 

  • Keunecke D, Evans R, Niemz P (2009) Microstructural properties of common yew and Norway spruce determined with Silviscan. IAWA J 30:165–178

    Google Scholar 

  • Krabbe E (1960) Messungen von Gleit- und Dehnungszahlen an Holzstabchen mit rechteckigen Querschnitten. Dissertation, Hannover, p 106

  • Lang EM, Bejo L, Szalai J, Kovacs Z, Anderson RB (2002) Orthotropic strength and elasticity of hardwoods in relation to composite manufacture. Part II. Orthotropy of compression strength and elasticity. Wood Fiber Sci 34:350–365

    CAS  Google Scholar 

  • Liu JY (2002) Analysis of off-axis tension test of wood specimens. Wood Fiber Sci 34:205–211

    CAS  Google Scholar 

  • Neuhaus FH (1981) Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Dissertation, University of Bochum

  • Neuhaus H (1983) Über das elastische Verhalten von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Holz Roh Werkst 41:21–25

    Article  Google Scholar 

  • Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW, Leinfelden-Echterdingen

    Google Scholar 

  • Reiterer A, Stanzl-Tschegg SE (2001) Compressive behaviour of softwood under uniaxial loading at different orientations to the grain. Mech Mater 33:705–715

    Article  Google Scholar 

  • Sell J (1997) Eigenschaften und Kenngrössen von Holzarten. Baufachverlag, Dietikon

    Google Scholar 

  • Shipsha A, Berglund LA (2007) Shear coupling effects on stress and strain distributions in wood subjected to transverse compression. Compos Sci Technol 67:1362–1369

    Article  Google Scholar 

  • Suzuki H, Sasaki E (1990) Effect of grain angle on the ultrasonic velocity of wood. Mokuzai Gakkaishi 36:103–107

    Google Scholar 

  • Szalai J (1994) A faanyag és faalapú anyagok anizotrop rugalmasság- és szilárdságtana (English title: Anisotropic strength and elasticity of wood and wood based composites), Sopron [in Hungarian]

  • Van Mier JGM (1997) Fracture processes of concrete: assessment of material parameters for fracture models. CRC Press, Boca Raton

    Google Scholar 

  • Voigt W (1928) Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig

    Google Scholar 

  • Wagenführ R (2000) Holzatlas. Fachbuchverlag Leipzig, Munich

    Google Scholar 

  • Wommelsdorff O (1966) Dehnungs- und Querdehnungszahlen von Hölzern. Dissertation, University of Hannover

  • Yoshihara H (2009) Prediction of the off-axis stress strain relation of wood under compression loading. Eur J Wood Prod 67:183–188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Keunecke.

Additional information

This article is dedicated to Gerd Wegener on the occasion of his retirement as professor at the Technische Universität München.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garab, J., Keunecke, D., Hering, S. et al. Measurement of standard and off-axis elastic moduli and Poisson’s ratios of spruce and yew wood in the transverse plane. Wood Sci Technol 44, 451–464 (2010). https://doi.org/10.1007/s00226-010-0362-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-010-0362-2

Keywords

Navigation