Skip to main content
Log in

Air-coupled ultrasound as an accurate and reproducible method for bonding assessment of glued timber

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Glued timber products are widely used in construction; therefore, it is necessary to develop non-destructive bonding quality assessment methods for long-term structural health monitoring. Air-coupled ultrasound (ACU) inspection is a novel technique, with phenomenal improvements in reproducibility compared to traditional contact ultrasonics, unlimited scanning possibilities, and a high potential for delamination detection in wood products. As part of an ongoing project, glued timber samples of 10 mm thickness with artificial glue line defects were inspected. A normal through-transmission set-up with 120 kHz transducers allowed for successful and accurate imaging of the geometry of glued and non-glued areas in all inspected objects. The influence of wood heterogeneity and the reproducibility of ACU amplitude measurements were analysed in detail, identifying the main sources of variation. Future work is planned for the inspection of more complex glued timber objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aicher S, Dill-Langer G, Ringger T (2002) Non-destructive detection of longitudinal cracks in glulam beams. Otto Graf J 13:165–181

    Google Scholar 

  • Biernacki JM, Beall FC (1996) Acoustic monitoring of cold-setting adhesive curing in wood laminates. Int J Adhes Adhes 16(3):165–172

    Article  CAS  Google Scholar 

  • Brekhovskikh LM (1980) Waves in layered media. Academic Press, New York

    Google Scholar 

  • Bucur V (2002) Propagation and polarization of ultrasonic waves in wood. In: Proc. of the 11th international symposium on nondestructive characterization of materials, Berlin, Germany, pp 55–60

  • Bucur V (2006) Acoustics of wood. Springer, Berlin

    Google Scholar 

  • Bucur V, Bohnke I (1994) Factors affecting ultrasonic measurements in solid wood. Ultrasonics 32(5):385–390

    Article  Google Scholar 

  • Choi MY, Park JH, Kim WT, Kang KS (2008) Detection of delamination defect inside timber by sonic IR. In: Proc. of the society of photo-optical instrumentation engineers (SPIE), Orlando, FL, USA, pp U306–U309

  • Deutsch V, Platte M, Vogt M, Verein Deutscher Ingenieure (1997) Ultraschallprüfung Grundlagen und industrielle Anwendungen. Springer, Berlin

  • Dill-Langer G, Bernauer W, Aicher S (2005a) Inspection of glue-lines of glued-laminated timber by means of ultrasonic testing. In: Proc. of the 14th international symposium on nondestructive testing of wood, Eberswalde, Germany, pp 49–60

  • Dill-Langer G, Aicher S, Bernauer W (2005b) Reflection measurements at timber glue-lines by means of ultrasound shear waves. Otto Graf J 16:273–283

    Google Scholar 

  • Dunky M, Niemz P (2002) Holzwerkstoffe und Leime: Technologie und Einflussfaktoren. Springer, Berlin

    Book  Google Scholar 

  • EN 14080:2005 Timber structures—glued laminated timber—requirements

  • EN 391:2001 Glued laminated timber—delamination test of glue lines

  • Feeney FE, Chivers RC, Evertsen JA, Keating J (1997) The influence of inhomogeneity on the propagation of ultrasound in wood. In: Proc. of the 17th ultrasonics international conference (UI 97), Delft, Netherlands, pp 449–453

  • Gan TH, Hutchins DA, Green RJ, Andrews MK, Harris PD (2005) Noncontact, high-resolution ultrasonic imaging of wood samples using coded chirp waveforms. IEEE T Ultrason Ferr 52(2):280–288

    Article  Google Scholar 

  • Gattiker F, Umbrecht F, Neuenschwander J, Sennhauser U, Hierold C (2007) Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS). Sensor Actuat A-Phys 145(Sp. Iss.):291–298

  • Gudra T (2008) Ultrasounds in gas media: generation, transmission, applications (review paper). Arch Acoust 33(4):581–592

    Google Scholar 

  • Hasenstab A (2006) Integritaetspruefung von Holz mit dem zerstoerungsfreien Ultraschallechoverfahren. Dissertation, Technische Universitaet Berlin

  • Hasenstab A, Krause M, Hillger W, Buehling L, Ilse D, Hillemeier B, Rieck C (2005) Luftultraschall und Ultraschall-Echo-Technik an Holz. In: Proc. of the German society for nondestructive testing (DGZfP), Rostock, Germany

  • Hu LJ, Gagnon S (2007) X-Ray-based scanning technique for non-destructive evaluation of finger-joint strength. In: Proc. of the 15th international symposium on NDT of wood, Deluth, MN, USA

  • Kabir MF, Schmoldt DL, Schafer ME (2002) Time domain ultrasonic signal characterization for defects in thin unsurfaced hardwood lumber. Wood Fiber Sci 34(1):165–182

    CAS  Google Scholar 

  • Kunkle J, Vun RY, Eischeild T, Langron M, Bhardwaj N, Bhardwaj MC (2006) Phenomenal advancements in transducers and piezoelectric composites for non-contact ultrasound and other applications. In: Proc. of the European conference on non-destructive testing (ECNDT), Berlin, Germany

  • Maeva E, Severina I, Bondarenko S, Chapman G, O’Neill B, Severin F, Maev RG (2004) Acoustical methods for the investigation of adhesively bonded structures: a review. Can J Phys 82(12):981–1025

    Article  CAS  Google Scholar 

  • Neuenschwander J, Niemz P, Kucera LJ (1997) Studies for visualizing wood defects using ultrasonic techniques in reflection and transmission mode. Holz Roh- Werkst 55(5):339–340

    Article  Google Scholar 

  • Niemz P, Sander D (1990) Prozessmesstechnik in der Holzindustrie. VEB Fachbuchverlag, Leipzig

    Google Scholar 

  • Rangarajan R, Krishnamurthy CV, Balasubramaniam K (2008) Ultrasonic imaging using a computed point spread function. IEEE T Ultrason Ferr 55(2):451–464

    Article  Google Scholar 

  • Schmerr LW, Song S-J (2007) Ultrasonic nondestructive evaluation systems models and measurements. Springer, New York

    Book  Google Scholar 

  • Siddiolo AM, D’Acquisto L, Maeva AR, Maev RG (2007) Wooden panel paintings investigation: an air-coupled ultrasonic imaging approach. IEEE T Ultrason Ferr 54(4):836–846

    Article  Google Scholar 

  • Solodov I, Pfleiderer K, Busse G (2004) Nondestructive characterization of wood by monitoring of local elastic anisotropy and dynamic nonlinearity. Holzforschung 58(5):504–510

    Article  CAS  Google Scholar 

  • Stoessel R (2004) Air-coupled ultrasound inspection as a new non-destructive testing tool for quality assurance. Dissertation, Universitaet Stuttgart

  • Vun RY, Wu QL, Bhardwaj MC, Stead G (2003) Ultrasonic characterization of structural properties of oriented strandboard: a comparison of direct-contact and non-contact methods. Wood Fiber Sci 35(3):381–396

    CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Swiss National Science Foundation under contract 200021-115920. The authors acknowledge the work of Oliver Tolar and Fabian Binkert for the analysis of optical images and processing of ultrasonic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio J. Sanabria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanabria, S.J., Mueller, C., Neuenschwander, J. et al. Air-coupled ultrasound as an accurate and reproducible method for bonding assessment of glued timber. Wood Sci Technol 45, 645–659 (2011). https://doi.org/10.1007/s00226-010-0357-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-010-0357-z

Keywords

Navigation