Skip to main content
Log in

Knots in trees: strain distribution in a naturally optimised structure

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Electronic speckle pattern interferometry was applied to directly measure the distribution of longitudinal, tangential, and shear strains in small boards of Norway spruce (Picea abies (L.) Karst.) exposed to tensile load in longitudinal direction. A sample with a central intergrown knot and one with an equivalent loose knot were compared with reference samples made of clear wood with an artificial central circular or square hole, respectively. The observed measurements were compared with a finite element (FE) simulation. The FE model was based on a geometric model to quantify the local fibre orientation and a micromechanical model to estimate elastic constants of clear wood and knot tissue. Both the measurements and simulation clearly illustrate a rather homogenous strain distribution around the intergrown knot. In comparison, the natural optimisation of dispersing strain peaks is less efficient in the case of loose knots. The artificial circular and square holes in samples with parallel fibre orientation lead to high gradients in the strain field and peak values in vicinity of the disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Dantec—Ettemeyer (2001) ISTRA for windows, version 3.3.12. Dantec Ettemeyer GmbH, Ulm

    Google Scholar 

  • Dumail JF, Kenneth O, Salmén L (2000) An analysis of rolling shear of spruce wood by the iosipescu method. Holzforschung 54:420–426

    Article  CAS  Google Scholar 

  • Eberhardsteiner J (1995) Biaxial testing of orthotropic materials using electronic speckle pattern interferometry. Measurement 16:139–148

    Article  Google Scholar 

  • Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz—Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften. Springer Wien, New York

    Google Scholar 

  • Foley C (2001) A three-dimensional paradigm of fiber orientation in timber. Wood Sci Technol 35:453–465

    Article  CAS  Google Scholar 

  • Gindl W, Sretenovic A, Vincenti A, Müller U (2005) Direct measurement of strain distribution along a wood bond line—part II: effects of adhesive penetration on strain distribution. Holzforschung 59:307–310

    Article  CAS  Google Scholar 

  • Gingerl M (1998) Realisierung eines optischen Deformationsmesystems zur experi-mentellen Untersuchung des orthotropen Materialverhaltens von Holz bei biaxialer Beanspruchung. Doctoral thesis, Vienna University of Technology

  • Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A Solids 24:1030–1053

    Article  Google Scholar 

  • Hofstetter K, Hellmich C, Eberhardsteiner J (2007) Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung 61:343–351

    Article  CAS  Google Scholar 

  • Jernkvist LO, Thuvander F (2001) Experimental determination of stiffness variation across growth rings in Picea abies. Holzforschung 55:309–317

    Article  CAS  Google Scholar 

  • Konnerth J, Valla A, Gindl W, Müller U (2006) Measurement of strain distribution in timber finder joints. Wood Sci Technol 40:631–636

    Article  CAS  Google Scholar 

  • Mattheck C (1991) Trees—the mechanical design. Springer, Berlin

    Google Scholar 

  • Mattheck C (1998) Design in nature—learning from trees. Springer, Berlin

    Google Scholar 

  • Mattheck C, Kubler H (1997) Wood—the internal optimization of trees. Springer, Berlin

    Google Scholar 

  • Mohan NK, Rastogi P (2003) Recent developments in digital speckle pattern interferometry. Opt Lasers Eng 40(5–6):439–445

    Article  Google Scholar 

  • Müller U, Sretenovic A, Vincenti A, Gindl W (2005) Direct measurement of strain distribution along a wood bond line—part I: shear strain concentration in a lap joint specimen by means of electronic speckle pattern interferometry. Holzforschung 59:300–306

    Article  Google Scholar 

  • Müller U, Gindl W, Jeronimidis G (2006) Biomechanics of a branch—stem junction in softwood. Trees Struct Funct 20(5):643–648

    Google Scholar 

  • Phillips GE, Bodig J, Goodman JR (1981) Flow-grain analogy. Wood Sci 14(2):55–64

    Google Scholar 

  • Rastogi PK (2001) Measurement of static surface displacements, derivatives of displacements, and three-dimensional surface shapes—examples of applications to non-destructive testing. In: Rastogi PK (ed) Digital speckle pattern interferometry and related techniques. Wiley, New York, pp 141–224

    Google Scholar 

  • Resch E, Kaliske M (2005) Bestimmung des Faserverlaufs bei Fichtenholz. Leipz Annu Civ Eng Rep 10:117–130

    Google Scholar 

  • Reuschel JD (1999) Untersuchungen der Faseranordnung natürlicher Faserverbunde und Übertragung der Ergebnisse auf technische Bauteile mit Hilfe der Finite-Elemente-Methode. Dissertation, Forschungszentrum Karlsruhe GmbH, Karlsruhe

  • Shigo AL (1985) How tree branches are attached to trunks. Can J Bot 63:1391–1401

    Article  Google Scholar 

  • Shigo AL (1990) A new tree biology. Thalacker, Braunschweig

    Google Scholar 

  • Siebert T, El-Ratal W, Wegner R, Ettemeyer A (2002) Combine simulation and experiment in automotive testing with ESPI measurement. Exp Tech 26(3):42–47

    Article  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin

    Google Scholar 

  • Trendelenburg R (1955) Das Holz als Rohstoff. Carl Hanser Verlag, München

    Google Scholar 

  • Ullmann E (2004) Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH, New York

    Google Scholar 

  • Valla A, Konnerth J, Keunecke D, Niemz P, Müller U, Gindl W (2010) Comparison of two optical methods for contactless, full field and highly sensitive in plane deformation measurements using the example of plywood (Submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Buksnowitz.

Additional information

This article is dedicated to Gerd Wegener on the occasion of his retirement as professor at the Technische Universität München.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buksnowitz, C., Hackspiel, C., Hofstetter, K. et al. Knots in trees: strain distribution in a naturally optimised structure. Wood Sci Technol 44, 389–398 (2010). https://doi.org/10.1007/s00226-010-0352-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-010-0352-4

Keywords

Navigation