Skip to main content
Log in

Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves

  • ORIGINAL
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Despite the exceptional position of yew among the gymnosperms concerning its elastomechanical properties, no reference values for its elastic constants apart from the longitudinal Young’s modulus have been available from literature so far. Hence, this study’s objective was to determine the Young’s moduli E L, E R and E T and the shear moduli G LR, G LT and G RT of yew wood. For that purpose, we measured the ultrasound velocities of longitudinal and transversal waves applied to small cubic specimens and derived the elastic constants from the results. The tests were carried out at varying wood moisture contents and were applied to spruce specimens as well in order to put the results into perspective. Results indicate that E L is in the same order of magnitude for both species, which means that a high-density wood species like yew does not inevitably have to have a high longitudinal Young’s modulus. For the transverse Young’s moduli of yew, however, we obtained 1.5–2 times, for the shear moduli even 3–6 times higher values compared to spruce. The variation of moisture content primarily revealed differences between both species concerning the shear modulus of the RT plane. We concluded that anatomical features such as the microfibril angle, the high ray percentage and presumably the large amount of extractives must fulfil important functions for the extraordinary elastomechanical behaviour of yew wood which still has to be investigated in subsequent micromechanical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers K (1970) Querdehnungs- und Gleitzahlen sowie Schub- und Scherfestigkeiten von Holzwerkstoffen, Dissertation, Hamburg, p 117

  • Astley RJ, Stol KA, Harrington JJ (1998) Modelling the elastic properties of softwood – Part II: the cellular microstructure. Holz Roh- Werkst 56:43–50

    Article  Google Scholar 

  • Bariska M (1998) Verwendung des Eibenholzes gestern und heute. Schweiz Z Forstwes 149:340–348

    Google Scholar 

  • Becker H (1967) Possibilities of using ultrasonic waves in testing wood and particle board. Holzforschung 21:135–145

    Article  Google Scholar 

  • Bergander A, Salmén L (2000) Variations in transverse fibre wall properties: relations between elastic properties and structure. Holzforschung 54:654–660

    Article  CAS  Google Scholar 

  • Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37:151–156

    Article  CAS  Google Scholar 

  • Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New York, p 712

  • Booker RE, Froneberg J, Collins F (1996) Variation of sound velocity and dynamic Young’s modulus with moisture content in the three principal directions. In: Proceedings of 10th international symposium on non-destructive testing of wood, Lausanne, Switzerland

  • Bucur V (1995) Acoustics of wood. CRC Press, Boca Raton, p 284

  • Bucur V (1996) Acoustics of wood. Mater Sci Forum Vol 210–213:101–108

    Google Scholar 

  • Bucur V, Archer RR (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18:255–265

    Article  Google Scholar 

  • Burgert I (2000) Die mechanische Bedeutung der Holzstrahlen im lebenden Baum, Dissertation, Hamburg, p 173

  • Burgert I, Bernasconi A, Niklas KJ, Eckstein D (2001) The influence of rays on the transverse elastic anisotropy in green wood of deciduous trees. Holzforschung 55:449–454

    Article  CAS  Google Scholar 

  • Burmester A (1965) Relationship between sound velocity and the morphological, physical and mechanical properties of wood. Holz Roh- Werkst 23:227–236

    Article  Google Scholar 

  • DIN 68364 (1979) Kennwerte von Holzarten – Festigkeit, Elastizität, Resistenz

  • Ehlbeck J (1967) Durchbiegungen und Spannungen von Biegeträgern aus Holz unter Berücksichtigung der Schubverformung, Dissertation, Karlsruhe, p 136

  • Görlacher R (1990) Klassifizierung von Brettschichtholzlamellen durch Messung von Longitudinalschwingungen, Dissertation, Karlsruhe, p 160

  • Grabner M, Müller U, Gierlinger N, Wimmer R (2005) Effects of heartwood extractives on mechanical porperties of larch. IAWA J 26:211–220

    Google Scholar 

  • Halász R, Scheer C (1986) Holzbau-Taschenbuch, Ernst Verlag für Architektur und technische Wissenschaften, Berlin

  • Jakubczyk B (1966) Technical properties of the yew wood from the preserve Wierzchlas. Sylwan 10:79–86

    Google Scholar 

  • Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe. Springer, Berlin Heidelberg New York, p 1050

    Google Scholar 

  • Kollmann F, Krech H (1960) Dynamic measurement of damping elasticity and elastic properties of wood. Holz Roh- Werkst 18:41–54

    Article  Google Scholar 

  • Kucera L (1998) Das Holz der Eibe. Schweiz Z Forstwes 149:328–339

    Google Scholar 

  • Kufner M (1978) Modulus of elasticity and tensile strength of wood species with different density and their dependence on moisture content. Holz Roh Werkst 36:435–439

    Article  Google Scholar 

  • Lee IDG (1958) A non-destructive method for measuring the elastic anisotropy of wood using an ultrasonic pulse technique. J Inst Wood Sci 1:43–57

    Google Scholar 

  • Märki C, Niemz P, Mannes D (2005) Comparative studies on selected mechanical properties of yew and spruce. Schweiz Z Forstwes 156:85–91

    Google Scholar 

  • Markwardt LJ, Wilson TRC (1935) Strength and related properties of woods grown in the United States, US Department of Agriculture, Forest Service, Tech Bull, Washington

  • Mertoglu-Elmas G (2003) Chemical components of heartwood and sapwood of common yew (Taxus baccata L.). J Environ Biol 24:489–492

    PubMed  CAS  Google Scholar 

  • Neuhaus FH (1981) Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit, Dissertation, Bochum, p 162

  • Niemz P, Kucera L, Bernatowicz G (1999) Studies on the effect of grain angle on the propagation velocity of soundwaves in wood. Holz Roh- Werkst 57:225–225

    Article  Google Scholar 

  • Nzokou P, Kamdem DP (2004) Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa). Wood Fiber Sci 36:483–492

    CAS  Google Scholar 

  • Sakai H, Minamisawa A, Takagi K (1990) Effect of moisture content on ultrasonic velocity and attenuation on woods. Ultrasonics 28:382–385

    Article  Google Scholar 

  • Schwab E, Polaczek P (1977) Determination of moduli of rigidity of wood by static torsional tests – contribution to revision of DIN 52190. Holz Roh- Werkst 35:23–27

    Article  Google Scholar 

  • Sekhar AC, Sharma RS (1959) A note on mechanical properties of Taxus baccata. Indian Forester 85:324–326

    Google Scholar 

  • Sell J (1997) Eigenschaften und Kenngrössen von Holzarten. Baufachverlag, Dietikon, p 87

  • Siau JF (1984) Transport processes in wood. Springer, Berlin Heidelberg New York, p 245

    Google Scholar 

  • Wagenführ R (2000) Holzatlas, Fachbuchverlag Leipzig, München, p 707

Download references

Acknowledgment

This work was supported by the European Cooperation in the field of scientific and technical research (COST, Action E35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Keunecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keunecke, D., Sonderegger, W., Pereteanu, K. et al. Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41, 309–327 (2007). https://doi.org/10.1007/s00226-006-0107-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-006-0107-4

Keywords

Navigation