Skip to main content

Advertisement

Log in

Electrical heating of green logs using Joule’s effect: a comprehensive computational model used to find a suitable electrode design

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

In order to insure an optimal process, logs must be heated prior to peeling. This operation requires considerable time under steaming or boiling. Electrical heating of logs using Joule’s effect is a way to reduce dramatically the heating time. A comprehensive computational model has been developed to investigate the possibilities offered by this method. This model accounts for the strongly coupled and non-linear effects that exist between heat, mass and electricity transfers within the log. Several simulations are presented. At first, the problem due to the presence of both sapwood and heartwood in the log is analysed. Then, some solutions, namely in the design of the electrodes, are proposed to address this problem. The main conclusion of this work is that electrical heating alone is not able to guarantee a uniform temperature field. Finally, a severe heating of the sapwood part followed by a waiting period which enables heating of the heartwood part by conduction is recommended. This procedure is able to cut the classical heating time by a factor of ten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Abbreviations

c :

Molar concentration (mol m-3)

\(\overline{\overline {\mathbf{D}}}\) :

Diffusivity tensor (m2 s-1)

E :

Electrical field (V m-1)

g :

Gravitational acceleration (m s-2)

h :

Specific enthalpy (J kg-1)

h s :

Differential heat of sorption (J kg-1)

j :

Current density (A m-2)

J :

Flux expression (kg m-2 s-1) or (J m-2 s-1)

k h :

Heat transfer coefficient (W m-2 K-1)

k m :

Mass transfer coefficient (m s-1)

\(\overline{\overline {\mathbf{K}}}\) :

Absolute permeability tensor (m2)

\(\overline{\overline {\mathbf{k}}}\) :

Relative permeability tensor

M :

Molar mass (kg mol-1)

n :

Unit normal vector

P :

Pressure (Pa)

R :

Gas constant (J mol-1 K-1)

T :

Temperature (K)

t :

Time (s)

U :

Electrical potential (V)

X :

Moisture content of wood (dry basis) (kg kg-1)

\(\overline{\overline {\mathbf{\Lambda }}} \) :

Thermal conductivity tensor (W m-1 K-1)

\(\overline{\overline {\mathbf{\gamma }}} \) :

Electrical conductivity tensor (Ω-1 m-1)

μ:

Dynamic viscosity (Pa s)

ρ:

Density (kg m-3)

ϕ:

Porosity or volume fraction (m3 m-3)

Φ:

Volumetric heat source (W m-3)

χ:

Depth scalar (m)

ω:

Mass fraction

a:

Air

b:

Bound water

c:

Capillary

eff:

Effective property

FSP:

Fibre saturation point

g:

Gas phase

ℓ:

Liquid phase

s:

Solid phase

v:

Vapour

∞:

Value outside the boundary layer in the free stream

v :

Vectors are denoted by bold letters (or vi in index notation)

\(\overline{\overline {\mathbf{v}}}\) :

Second order tensors are denoted by bold letters with double bar

:

A simple bar denotes a global average over the representative elementary volume (REV)

i :

A simple bar with a superscript denotes an intrinsic average over the corresponding phase included in the representative elementary volume (REV)

References

  • Bruhat G (1959) Cours de physique générale: electricité, 7th edn. Revue par G. Goudet, Mason, Paris

  • Degiovanni A (1977) Diffusivité et méthode flash. Rev Gen Therm 185:420–442

    Google Scholar 

  • Goring DAI (1963) Thermal softening of lignin, hemicellulose and cellulose. Pulp Pap–Canada T:517–527

  • Irvine GM (1984) The glass transitions of lignin and hemicellulose and their measurements by differential thermal analysis. Tappi J 67(5):118–121

    CAS  Google Scholar 

  • Joly P, More-Chevalier F (1980) Théorie, pratique et économie du séchage des bois. H. Vidal Editeur, Paris

  • Kollmann FP, Côté WA (1968) Principles of wood science and technology. I. Solid wood. Springer, Berlin Heidelberg New York

  • Kuroda N, Tsutsumi J (1981) Effect of moisture content and temperature on frequency dependence of conductivity of wood. Mokuzai Gakkaishi 27(9):665–670

    Google Scholar 

  • Kuroda N, Tsutsumi J (1982) Anisotropic behaviour of electrical conduction in wood. Mokuzai Gakkaishi 28(1):25–30

    Google Scholar 

  • Lin RT (1965) A study on the electrical conduction in wood. Forest Prod J 15:506–514

    Google Scholar 

  • Marchal R ( 2000) Contribution au développement d’une chauffe électrique rapide de bois vert de Douglas en vue de son déroulage. Convention DERF n° 01.40.32/98, Final report, ENSAM Cluny, France

  • Mothe F, Marchal R, Tilmant-Tatischeff W (2000) Sécheresse à coeur du Douglas et aptitude au déroulage: recherche de procédés alternatifs d’étuvage. Part I répartition de l’eau dans le bois vert et réhumidification sous autoclave. Ann Sci Forest 57:219–228

    Article  Google Scholar 

  • Perré P (1992) Tranferts couplés en milieux non-saturés. Possibilités et limitations de la formulation macroscopique. Habilitation à Diriger des Recherches, INPL, Nancy, France

  • Perré P, Degiovanni A (1990) Simulations par volumes finis des transferts couplés en milieu poreux anisotropes: séchage du bois à basse et à haute temperature. Int J Heat Mass Tran 33(11):2463–2478

    Article  Google Scholar 

  • Perré P, Moser M, Martin M (1993) Advances in transport phenomena during convective drying with superheated steam or moist air. Int J Heat Mass Tran 36(11):2725–2746

    Article  Google Scholar 

  • Perré P, Moyne C (1991) Processes related to drying: part II—use of the same model to solve transfers both in saturated and unsaturated porous media. Dry Technol 9(5):1153–1179

    Google Scholar 

  • Perré P, Turner I (1996) The use of macroscopic equations to simulate heat and mass transfer in porous media. In: Turner I, Mujumdar AS (eds) Mathematical modeling and numerical techniques in drying technology. Marcel Dekker, New York

  • Perré P, Turner I (1999) TransPore: a generic heat and mass transfer computational model for understanding and visualising the drying of porous media. Dry Technol 17(7):1273–1289

    Google Scholar 

  • Salmen L (1984) Viscoelastic properties of in situ lignin under water-saturated conditions. J Mater Sci 19:3090–3096

    CAS  Google Scholar 

  • Sammon PH (1988) An analysis of upstream weighting. Soc Petrol Eng J 3:1053–1056

    Google Scholar 

  • Skaar C (1988) Wood-water relations. Springer, Berlin Heidelberg New York

  • Turner I, Perré P (1996) A synopsis of the strategies and efficient resolution techniques used for modelling and numerically simulating the drying process. In: Turner I, Mujumdar AS (eds) Mathematical modeling and numerical techniques in drying technology. Marcel Dekker, New York

  • Turner I, Perré P (2001) The use of implicit flux limiting schemes in the simulation of the drying process: a new maximum flow sensor applied to phase mobilities. J Appl Math Model 25:513–540

    Article  Google Scholar 

  • van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comp 13:631–645

    Google Scholar 

  • Whitaker S (1977) Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv Heat Tran 13:119–203

    CAS  Google Scholar 

  • Whitaker S (1998) Coupled transport in multiphase systems: a theory of drying. Adv Heat Tran 31:1-104

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work has been obtained from the Ministry of Agriculture, through a research project entitled “Contribution au développement d’une chauffe électrique rapide de bois vert de Douglas en vue de son déroulage” convention DERF n° 01.40.32/98, coordinated by Remy Marchal, ENSAM Cluny, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Perré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perré, P. Electrical heating of green logs using Joule’s effect: a comprehensive computational model used to find a suitable electrode design. Wood Sci Technol 38, 429–449 (2004). https://doi.org/10.1007/s00226-004-0240-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-004-0240-x

Keywords

Navigation