Skip to main content

Multiplication Algorithm Based on Collatz Function


This article presents a new multiplication algorithm based on the Collatz function. Assuming the validity of the Collatz conjecture, the time complexity of multiplying two n-digit numbers is O(kn), where the k is the number of odd steps in the Collatz trajectory of the first multiplicand. Most likely, the algorithm is only of theoretical interest.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Hercher, C.: Über die Länge nicht-trivialer Collatz-Zyklen. Die Wurzel, 6 and 7 (2018)

  2. Tao, T.: The Collatz conjecture, Littlewood-Offord theory, and powers of 2 and 3 (2011)

  3. Lagarias, J.C.: The 3x + 1 problem and its generalizations. The American Mathematical Monthly 92(1), 3–23 (1985)

    MathSciNet  Article  Google Scholar 

  4. Crandall, R.E.: On the “3x + 1” problem. Mathematics of Computation 32(144), 1281–1292 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Lagarias, J.C.: The 3x + 1 problem: An annotated bibliography (1963–1999) (sorted by author). arXiv:math/0309224 (2003)

  6. Lagarias, J.C.: The 3x + 1 problem: An annotated bibliography, II (2000-2009). arXiv:math/math/0608208 (2006)

  7. Chamberland, M.: Una actualizacio del problema 3x + 1. Butlleti de la Societat Catalana de Matematiques 22(2), 1–27 (2003). An English version “An Update on the 3x + 1 Problem”

    Google Scholar 

  8. Oliveira e Silva, T.: Empirical verification of the 3x + 1 and related conjectures. In: Lagarias, J.C. (ed.) The Ultimate Challenge: The 3x + 1 Problem, pp 189–207. American Mathematical Society (2010)

  9. Lagarias, J.C., Weiss, A.: The 3x + 1 problem: Two stochastic models. Annals of Applied Probability 2(1), 229–261 (1992)

    MathSciNet  Article  Google Scholar 

  10. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Physics – Doklady 7, 595–596 (1963). Originally published in 1962

    Google Scholar 

  11. Toom, A.: The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Mathematics – Doklady 3, 714–716 (1963). Originally published in Russian

    MATH  Google Scholar 

  12. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7(3), 281–292 (1971)

    MathSciNet  Article  Google Scholar 

Download references


Computational resources were supplied by the project “e-Infrastruktura CZ” (e-INFRA LM2018140) provided within the program Projects of Large Research, Development and Innovations Infrastructures. This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project IT4Innovations excellence in science – LQ1602 and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project IT4Innovations National Supercomputing Center – LM2015070.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David Barina.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barina, D. Multiplication Algorithm Based on Collatz Function. Theory Comput Syst 64, 1331–1337 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Multiplication algorithm
  • Division algorithm
  • Computer arithmetic
  • Collatz conjecture